UNIFIED MODEL DOCUMENTATION PAPER NO S1

INTERPOLATION TECHNIQUES AND GRID TRANSFORMATION USED IN THE UNIFIED MODEL

by

D.M Goddard

Version 13

23rd October 1998

Model Version 4.5

Numerical Weather Prediction Meteorological Office London Road BRACKNELL Berkshire RG12 2SZ United Kingdom

(c) Crown Copyright 1998

This document has not been published. Permission to quote from it must be obtained from the Head of Numerical Modelling at the above address.

		Modification Record					
Model version	Author	Description					
1.11		 Appendix 1: H_INT_CO argument list changed to accommodate non-uniform grids. V_INT_Z changed to ignore top model level. Appendix 2:TRACER_LEVELS_ADV_OUT added to namelist SIZE. Use of unit 19 changed. Unit 37 no longer used. 					
1.12		Appendix 2:Sample code to access ECMWF analyses changed to UNICOS					
1.15		Appendix 2:Logical RESET added to Namelist SIZE					
1.17		Method of specifying topography subarea revised STRAT_Q introduced to Namelist SIZE					
2.2		Appendix 2:Option to use MSLP in ECMWF grib code extraction introduced. Order of MARS upper air extraction changed.					
2.5		Appendix 2:Ocean dumps with no bottom topography can be reconfigured. MARS extraction example changed because of RACF changes					
2.7		Appendix 2:Option to initialise tracer variables introduced					
3.1		Appendix 2:a ECMWF grib code interface extended to include access to date stored on ECMWF model levels. Grib interface made portable.b.Transplant of data from one dump into another supported c.Incorporation of ECMWF ensemble perturbations supported.					
Document version							
Version 8	A Dickinson	Equation 3.6a new. Equation 3.16 modified. Equation 3.18 corrected.					
Version 9		Appendix 2 revised					
Version 10	D. Goddard	Appendix 2: new routines INTF_COAST_AJ and SPIRAL_S added. corrections to other argument lists.					
Version 10.1		Equation 3.9 corrected, T _s replaces T _*					
Version 11	D.M Goddard	New option for vertical interpolation is described for output modelling. in section 3.3.1 and appendix 3. Appendices 1 and 2 updated for UM version 4.3 and MPP					
Version 12	D.M. Goddard	Appendix 2 updated for UM version 4.4					
Version 13	D.M. Goddard	Appendices 1 and 2 updated for UM version 4.5. Equations corrected in section 5.1.					

1. INTRODUCTION

Interpolation is the mechanism by which data is transformed from one grid to another. As such it is present in all parts of the unified model suite. The analysis scheme, for example, is a specific application of interpolation. This note concentrates on the techniques used in two areas of the model in particular:

(i) the interpolation of initial analyses and lateral boundary data to new resolutions

(ii) the interpolation of primary model variables to pressure levels for output.

Horizontal interpolation is discussed in Chapter 2 and vertical interpolation in Chapter 3. Chapter 4 describes the techniques used for temporal interpolation of ancillary fields. The transformation between the latitude longitude grid and the equatorial latitude longitude grid used in regional versions of the model is described in Chapter 5. One of the main applications of interpolation is the provision of initial model fields at new resolutions through the reconfiguration step. All the interpolation step is described in Appendix 2.

2. HORIZONTAL INTERPOLATION

2.1 General formula

Horizontal interpolation is carried out using a standard bi-linear technique. Assuming a regular x-y grid of resolution $(\Delta x, \Delta y)$, an intermediate value of field F at coordinates (x', y') is estimated from the formula

$$F(x',y') = (1-a)(1-b)F(x,y) + a(1-b)F(x+\Delta x,y) + b(1-a)F(x,y+\Delta y) +ab F(x+\Delta x,y+\Delta y)$$
(2.1)

where $x \ge x' \succ x + \Delta x$ and $y \ge y' \succ y + \Delta y$. The weights a and b are given by

$$a = \frac{x'-x}{\Delta x}$$
 and $b = \frac{y'-y}{\Delta y}$ (2.2)

A special case of this formula, widely used in the discretization of the integration scheme, is the calculation of the value at the centre of a grid box. In this case a=b=0.5.

2.2 Coastal adjustment

Coastal values of surface temperature, soil moisture content and other surface fields require further

adjustment after the application of equation (2.1). This is because horizontal interpolation in these regions uses both land and sea values which can generate inappropriate results. The adjustment is controlled by a land-sea mask at the new resolution, coastal values on the new grid being reset to the value of the nearest point of the same type on the old grid.

Interpolation to higher resolutions may resolve islands or lakes which are several grid lengths away from other grid points of the same type. The search radius is limited to one gridlength to ensure that representative values are used. If no point of the same type exists within this radius, then the new point is assigned the value (but not the type) of the nearest point of the opposite type on the old grid. Separate pointers to unresolved sea and land points are provided so that corrections (say using climatology) may be made by the user.

3. VERTICAL INTERPOLATION

The requirements for vertical interpolation are threefold; from hybrid to pressure coordinates for output purposes; from hybrid to hybrid coordinates to allow a redistribution or change in the number of model levels; and finally, from pressure to hybrid coordinates to support the importing of analyses on pressure levels from other centres or from the WGDOS archive.

The hybrid coordinate, $\boldsymbol{\eta}$, is defined by

$$\boldsymbol{\eta} = \boldsymbol{A} + \boldsymbol{B} \tag{3.1}$$

where

$$p = Ap_0 + Bp_* \tag{3.2}$$

Vertical interpolation therefore reduces to an interpolation between two arbitrary sets of pressure levels.

3.1 General formula

Vertical interpolation of u and v, relative (rather than specific) humidity and cloud liquid water is carried out assuming that these quantities vary linearly with log pressure. The value of field F at pressure p_i is given by the formula:

$$F_{i} = \begin{cases} F_{top} & p_{i} < p_{top} \\ \alpha F_{j} + (1 - \alpha) F_{j-1} & p_{j} < p_{i} < p_{j-1} \\ F_{1} & p_{i} > p_{1} \end{cases}$$
(3.3)

where j and j-1 are levels at which the field F is known immediately above and below level i, and

$$\alpha = \frac{\ln \left| \frac{\mathbf{p}_{i}}{\mathbf{p}_{j-1}} \right|}{\ln \left| \frac{\mathbf{p}_{j}}{\mathbf{p}_{j-1}} \right|}$$
(3.4)

When outputting wind fields, an extra level of winds derived through maximum wind modelling is used.

3.2 Height and mean sea level pressure

The height field is required for output purposes. The method used is that proposed by Swinbank and Wilson (1990) and is based on the hydrostatic relationship. It differs from the calculation of height in the dynamics in several ways with both the correction term which ensures angular momentum conservation and the additional Coriolis terms being ignored.

From the hydrostatic equation the height of each η layer boundary (Figure 1) is given by

$$z_{k-\frac{1}{2}} = z_{*} + \frac{c_{p}}{g} \sum_{m=1}^{m=k-1} \left(\theta_{v}\right)_{m} \Delta \pi_{m}$$
(3.5)

where k = 2,....,top. The height at pressure p_i within layer k is then calculated using a second order approximation to the thickness of the layer between p_i and $p_{k-\frac{1}{2}}$

$$z_{i} = z_{k-\frac{1}{2}} + \frac{c_{p}}{g} \left\{ \left(\theta_{v}\right)_{k} \left[\pi_{k-\frac{1}{2}} - \pi_{i}\right] - \frac{1}{2} \left(\frac{\partial\theta}{\partial\pi}\right)_{k} \left[\pi_{i}(\pi_{i} - 2\pi_{k}) - \pi_{k-\frac{1}{2}}(\pi_{k-\frac{1}{2}} - 2\pi_{k})\right] \right\}$$

.

$$\pi_{\mathbf{k}} = \frac{\begin{bmatrix} \pi_{\mathbf{k}+\frac{1}{2}} & \mathbf{p}_{\mathbf{k}+\frac{1}{2}} & -\pi_{\mathbf{k}-\frac{1}{2}} & \mathbf{p}_{\mathbf{k}-\frac{1}{2}} \end{bmatrix}}{(\kappa+1) \begin{bmatrix} \mathbf{p}_{\mathbf{k}+\frac{1}{2}} & -\mathbf{p}_{\mathbf{k}-\frac{1}{2}} \end{bmatrix}}$$
(3.6a)

 $\pi = (p/100000)^{\kappa}$ In the above for $\pi_i, \pi_{k+\frac{1}{2}}, \pi_{k-\frac{1}{2}}$ and θ_v is the virtual potential temperature

defined by $\theta_v = T(1+0.61q)\pi^{-1}$. $\kappa = R/c_p$, where R is the gas constant and c_p is the specific

heat capacity of dry air. The full model level value of π_{L} is consistent with the geopotential

equation (UM Documentation paper 10, equation 26) and is given by

The local gradient $\left(\frac{\partial \theta}{\partial \pi}\right)_{\mathbf{k}}$ is defined as follows

$$\left(\frac{\partial\theta}{\partial\pi}\right)_{\mathbf{k}} = \begin{cases} \mathbf{T}_{\mathbf{kp}} - \mathbf{T}_{\mathbf{km}} \\ \mathbf{\pi}_{\mathbf{kp}} - \mathbf{\pi}_{\mathbf{km}} \end{cases} - \mathbf{\theta}_{\mathbf{k}} \end{cases} \mathbf{\pi}_{\mathbf{k}}^{-1}$$
(3.7)

where km = max(1,k-1) and kp = min(top,k+1). This formulation is designed to give an accurate

representation of $\left(\frac{\partial \theta}{\partial \pi}\right)_{\mathbf{k}}$ for an isothermal atmosphere; this is particularly important in the

stratosphere where the model layers are very deep.

The height of a pressure level above the top model layer is calculated by using equation (3.6) with k=top.

When calculating the height of a pressure level below the surface of the earth, that is when $p_i > p_*$,

a constant lapse rate $\gamma = 0.0065^{\circ} \text{Km}^{-1}$ is assumed from a reference temperature outside the

model's boundary layer. Using the standard altimeter equation, the temperature at the surface is given by

$$T_{s} = T_{r} \left(\frac{p_{*}}{p_{r}}\right)^{\frac{\gamma R}{g}}$$
(3.8)

where r=5 (when there are 4 levels in the boundary layer). The extrapolated temperature at level \mathbf{p}_i

is given by a similar expression and can also be calculated from

$$\mathbf{T}_{\mathbf{i}} = \mathbf{T}_{\mathbf{s}} + \gamma(\mathbf{z}_{*} - \mathbf{z}_{\mathbf{i}})$$
(3.9)

It then follows that the height of level $\ \boldsymbol{p}_i$ is given by

$$\mathbf{z}_{i} = \mathbf{z}_{*} + \left(\frac{\mathbf{T}_{s}}{\gamma}\right) \left[1 - \left(\frac{\mathbf{p}_{i}}{\mathbf{p}_{*}}\right)^{\frac{\gamma R}{g}}\right]$$
(3.10)

Mean sea level pressure may be calculated by substituting equation (3.8) into equation (3.9) and setting $z_i = 0$:

$$p_{msl} = p_{*} \left(\frac{T_{s} + \gamma z_{*}}{T_{s}} \right)^{\frac{g}{\gamma R}}$$
(3.11)

3.3 Temperature

3.3.1 Output modelling

The vertical interpolation of temperature for output purposes follows Swinbank and Wilson (1990) and is based on the assumption that T varies linearly with geopotential height. The temperature at pressure

$$\mathbf{p}_{\mathbf{i}}$$
 is calculated in one of two ways depending on whether $\mathbf{p}_{\mathbf{i}}$ falls in the top or bottom half of

layer k:

$$\mathbf{T}_{i} = \begin{cases} \mathbf{T}_{k} + \frac{\left(\mathbf{T}_{k-1} - \mathbf{T}_{k}\right) \theta_{k} \left(\pi_{i} - \pi_{k}\right)}{\theta_{k} \left(\pi_{i} - \pi_{k}\right) + \theta_{k-1} \left(\pi_{k-1} - \pi_{k-\frac{1}{2}}\right)} & \pi_{k-\frac{1}{2}} \geq \pi_{i} \succ \pi_{k} \\ \mathbf{T}_{i} = \begin{cases} \mathbf{T}_{k} + \frac{\left(\mathbf{T}_{k+1} - \mathbf{T}_{k}\right) \theta_{k} \left(\pi_{k} - \pi_{i}\right)}{\theta_{k} \left(\pi_{k} - \pi_{i}\right)} & \pi_{k} \geq \pi_{i} \succ \pi_{k+\frac{1}{2}} \end{cases}$$
(3.12)

Extrapolation is performed above the top level as follows:

$$\mathbf{T}_{\mathbf{i}} = \mathbf{T}_{\mathrm{top}} + \frac{\left(\mathbf{T}_{\mathrm{top}} - \mathbf{T}_{\mathrm{top-1}}\right) \boldsymbol{\theta}_{\mathrm{top}} \left(\pi_{\mathrm{top}} - \pi_{\mathbf{i}}\right)}{\boldsymbol{\theta}_{\mathrm{top}} \left(\pi_{\mathrm{top-1}} - \pi_{\mathrm{top}}\right) + \boldsymbol{\theta}_{\mathrm{top-1}} \left(\pi_{\mathrm{top-1}} - \pi_{\mathrm{top-1}}\right)} \qquad \pi_{\mathbf{i}} \leq \pi_{\mathrm{top}}$$
(3.13)

and between the bottom level and the surface as follows:

$$\mathbf{T}_{i} = \mathbf{T}_{1} + \frac{\left(\mathbf{T}_{1} - \mathbf{T}_{2}\right)\theta_{1}\left(\pi_{i} - \pi_{1}\right)}{\theta_{2}\left(\pi_{1}\frac{1}{2} - \pi_{2}\right) + \theta_{1}\left(\pi_{1} - \pi_{1}\frac{1}{2}\right)} \qquad \pi_{*} \leq \pi_{i} \succ \pi_{1}$$
(3.14)

$$T_{i} = T_{r} \left[\frac{p_{i}}{p_{r}} \right]^{\frac{\gamma R}{g}} \qquad p_{i} \succ p_{*}$$
(3.15)

Below the surface the standard altimeter equation is used as in the calculation of height (see equation (3.8)) with r=2.

To use equations 3.12 to 3.15 the model variable, potential temperature, θ_k has to be converted to temperature T_k (= $\Pi_k \theta_k$). All conversions internal to the model are done using the specification of Π_k given by equation (3.6a).

At stratospheric levels with thick model layers this can lead to a warm bias in derived temperatures (see Appendix 3). An *optional* vertical interpolation which uses an alternative specification of Π_k is available for *output modelling* and processing of satellite soundings (GLOSS/LASS). The specification for Π_k is designed to give zero error for an isothermal layer, T_k , whose geopotential thickness is

$$\Delta \Phi = R T_k \ln (p_{k-1/2}/p_{k+1/2}) = c_p \theta_k (\Pi_{k-1/2} - \Pi_{k+1/2})$$

so that, $T = \theta_k \Pi_k^{\#}$

which leads to the nominal model level value for $\Pi_{\!\scriptscriptstyle k}^{\ {}\#}$ given by

$$\Pi_{k}^{\#} = \kappa \frac{\Pi_{k-1/2} - \Pi_{k+1/2}}{\ln (p_{k-1/2} / p_{k+1/2})}$$
(3.6b)

This optional conversion is used for output *on pressure levels* if requested by the logical switch QV_INT_TP =.TRUE., which is included in the operational modification sets. The default is .FALSE., so that climate and other users continue to use the expression given by (3.6a).

3.3.2 Tropopause modelling

The calculation of the temperature, pressure and height of the tropopause follows Swinbank and Wilson (1990). First the lapse rates between model levels are calculated from

$$\gamma_{k+\frac{1}{2}} = \frac{T_{k} - T_{k+1}}{Z_{k+1} - Z_{k}} = \frac{g(T_{k} - T_{k+1})}{c_{p}\left(\theta_{k+1}(\pi_{k+\frac{1}{2}} - \pi_{k+1}) + \theta_{k}(\pi_{k} - \pi_{k+\frac{1}{2}})\right)}$$
(3.16)

A search is made for the first lapse rate less than 0.002 $^{\circ}$ Km $^{-1}$ which is above 500mb and with the

next lapse rate above also less than $0.002^{\circ} {\rm Km}^{-1}$. If this is found at level $j - \frac{1}{2}$, then the

tropopause is between level j-1 and level j. The tropopause temperature T_{T} is then given by

simultaneously extrapolating from T_j and $T_{j^{-1}}$ using the lapse rates $\gamma_{j^+\frac{1}{2}}$ and $\gamma_{j^-1\frac{1}{2}}$

respectively for the layers above and below the tropopause layer:

$$\mathbf{T}_{\mathbf{T}} = \mathbf{T}_{j-1} - \gamma_{j-1\frac{1}{2}} \left(\mathbf{z}_{\mathbf{T}} - \mathbf{z}_{j-1} \right) = \mathbf{T}_{j-1} - \gamma_{j-1\frac{1}{2}} \left(\mathbf{z}_{\mathbf{T}} - \mathbf{z}_{j-\frac{1}{2}} - \left(\mathbf{z}_{j-1} - \mathbf{z}_{j-\frac{1}{2}} \right) \right)$$
(3.17)

$$\mathbf{T}_{T} = \mathbf{T}_{j} - \gamma_{j+\frac{1}{2}} \left(\mathbf{z}_{T} - \mathbf{z}_{j} \right) = \mathbf{T}_{j} - \gamma_{j+\frac{1}{2}} \left(\mathbf{z}_{T} - \mathbf{z}_{j-\frac{1}{2}} - \left(\mathbf{z}_{j} - \mathbf{z}_{j-\frac{1}{2}} \right) \right)$$
(3.18)

For simplicity and consistency with equation (3.16), the tropopause calculation neglects the second order term used in equation (3.6) so that

$$\mathbf{z}_{j-i} - \mathbf{z}_{j+\frac{1}{2}} = \mathbf{c}_{p} / g \, \theta_{j-1} (\pi_{j-\frac{1}{2}} - \pi_{j-1})$$
(3.18a)

$$z_{j} - z_{j-\frac{1}{2}} = c_{p}/g \theta_{j} (\pi_{j-\frac{1}{2}} - \pi_{j})$$
(3.18b)

with π_j , π_{j-1} calculated using equation (3.6a). Equations (3.17) and (3.18) may be solved for $z_T^{-}z_{j-\frac{1}{2}}^{-1}$

to give

$$\mathbf{z}_{\mathrm{T}} - \mathbf{z}_{j-\frac{1}{2}} = \frac{\mathbf{T}_{j-1} - \mathbf{T}_{j} + \gamma_{j-1\frac{1}{2}} \left(\begin{array}{c} \mathbf{z}_{j-1} - \mathbf{z}_{j-\frac{1}{2}} \right) - \gamma_{j+\frac{1}{2}} \left(\begin{array}{c} \mathbf{z}_{j} - \mathbf{z}_{j-\frac{1}{2}} \right) \\ \gamma_{j-1\frac{1}{2}} - \gamma_{j+\frac{1}{2}} \end{array} \right)$$
(3.19)

with the proviso that $-\frac{1}{2}\Delta z_{j-1} \preceq z_T - z_{j-\frac{1}{2}} \preceq \frac{1}{2}\Delta z_j$. The temperature, T_T , and pressure, p_T ,

of the tropopause may then be found from:

$$\mathbf{T}_{\mathbf{T}} = \mathbf{T}_{j} - \gamma_{j+\frac{1}{2}} \left(\mathbf{z}_{\mathbf{T}} - \mathbf{z}_{j} \right)$$
(3.20)

$$p_{T} = p_{0} \pi_{T}^{1/\kappa}$$
 (3.21)

where

$$\pi_{T} = \begin{cases} \pi_{j-\frac{1}{2}} - \frac{g}{c_{p}\Theta_{j-1}} \left\{ z_{T} - z_{j-\frac{1}{2}} \right\} & z_{T} - z_{j-\frac{1}{2}} \leq 0 \\ \\ \pi_{j-\frac{1}{2}} - \frac{g}{c_{p}\Theta_{j}} \left\{ z_{T} - z_{j-\frac{1}{2}} \right\} & z_{T} - z_{j-\frac{1}{2}} \geq 0 \end{cases}$$
(3.22)

3.3.3 Importing temperature data

At version 2.7, the technique used to vertically interpolate temperature data imported on pressure surfaces or non standard *n*-surfaces into the model was changed to use the general formulae given in section 3.1, i.e. it assumes temperature varies linearly with log p. Conversion to potential temperature,

$$\Theta_k = T_k / \pi_k$$
, is done with π_k calculated as in equation (3.6a). The change from the previous

method described below was made because that method was found to give large errors when interpolating between two sets of levels of equal number with close location of corresponding levels.

Previous to version 2.7, the technique used to vertically interpolate temperature data imported on pressure surfaces or non standard *n*-surfaces into the model was based on the ideas of Swinbank and

Wilson (1990). The thickness of a model layer is first calculated by summing the partial thicknesses between adjacent model half levels and the intervening input levels. The layer thickness is then converted directly to potential temperature.

Given an input temperature profile T_i varying with pressure p_i , a function T_p may be

constructed such that $\, T \,$ varies linearly with log $\, p \,$ between input levels. The thickness $\, \Delta \varphi \,$

between any two pressure levels $\ \boldsymbol{p}_{a}^{}$ and $\ \boldsymbol{p}_{b}^{}$ is given by

$$\Delta \phi = \int_{p_a}^{p_b} \mathbf{R} \, \mathbf{T} \, \mathbf{d}(\log p) \tag{3.23}$$

If p_a and p_b are chosen to be model layer boundaries (say $p_{k^+\frac{1}{2}}$ and $p_{k^-\frac{1}{2}}$) the layer

potential temperature $\Theta_{\bf k}$ can be calculated in a manner consistent with the model hydrostatic

equation:

$$\Delta \phi_{\mathbf{k}} = c_{\mathbf{p}} \Theta_{\mathbf{k}} \left(\pi_{\mathbf{k}-\frac{1}{2}} - \pi_{\mathbf{k}+\frac{1}{2}} \right)$$
(3.24)

Thus

$$\Theta_{\mathbf{k}} = \int_{\mathbf{p}_{\mathbf{k}-\frac{1}{2}}}^{\mathbf{p}_{\mathbf{k}+\frac{1}{2}}} \frac{\kappa T}{\left(\frac{\pi_{\mathbf{k}-\frac{1}{2}} - \pi_{\mathbf{k}+\frac{1}{2}}}{\mathbf{k}-\frac{1}{2}}\right)} \quad d(\log p)$$
(3.25)

In order to use equation (3.25) it is necessary to calculate $T_{k+\frac{1}{2}}$ and $T_{k-\frac{1}{2}}$. Different calculations

are required depending on the position of a layer relative to the distribution of input levels. When the

input levels cover a model layer, that is when

$$\mathbf{p}_{\mathbf{k}-\frac{1}{2}} \preceq \mathbf{p}_{\mathbf{1}}$$
 (input) and $\mathbf{p}_{\mathbf{k}+\frac{1}{2}} \succeq \mathbf{p}_{\mathbf{top}}$ (input),

the temperature at a layer boundary $T_b (= T_{k+\frac{1}{2}} \text{ or } T_{k-\frac{1}{2}})$ is calculated from

$$\mathbf{T}_{\mathbf{b}} = \mathbf{T}_{\mathbf{i}} + \left(\mathbf{T}_{\mathbf{i+1}} - \mathbf{T}_{\mathbf{i}}\right) \frac{\ln\left[\mathbf{p}_{\mathbf{b}}/\mathbf{p}_{\mathbf{i}}\right]}{\ln\left[\mathbf{p}_{\mathbf{i+1}}/\mathbf{p}_{\mathbf{i}}\right]}$$
(3.26)

where i is the index of the input level immediately below and i+1 the index of the input level immediately above level b.

If the input data only gives partial coverage of a layer, that is at the bottom of the atmosphere when

$$\mathbf{p}_{\mathbf{k}-\frac{1}{2}} \succ \mathbf{p}_1$$
 (input) and $\mathbf{p}_{\mathbf{k}+\frac{1}{2}} \prec \mathbf{p}_1$,

or at the top of the atmosphere when

$$\mathbf{p}_{\mathbf{k}+\frac{1}{2}} \prec \mathbf{p}_{\mathbf{top}}$$
 (input) and $\mathbf{p}_{\mathbf{k}-\frac{1}{2}} \succ \mathbf{p}_{\mathbf{top}}$ (input),

the temperature at the layer boundary outside the area of data coverage is calculated by extrapolation from the two adjacent input levels using the assumption that T varies linearly with log p.

The layer mean value of $\,\Theta\,$ is then calculated as follows

$$\Theta_{k} = \kappa \left\{ \left(T_{k+\frac{1}{2}} + T_{i+j} \right) \ln \left[p_{i+j} / p_{k+\frac{1}{2}} \right] + \sum_{m=0}^{m=j-1} \left(T_{i+m} + T_{i+m+1} \right) \ln \left[p_{i+1} / p_{i+I+1} \right] \right. \\ \left. + \left(T_{k-\frac{1}{2}} + T_{i} \right) \ln \left[p_{k-\frac{1}{2}} / p_{i} \right] \right\} / \left. 2 \left(\pi_{k-\frac{1}{2}} - \pi_{k+\frac{1}{2}} \right) \right.$$
(3.27)

where i is the index of the first input level above level $k-\frac{1}{2}$ and i+j is the index of the input level

immediately below level $k+\frac{1}{2}$.

If a model layer falls completely above the top level of the input data, then the temperature of the layer is assigned the value of the topmost input level. Thus

$$\Theta_{\mathbf{k}} = \mathbf{T}_{\mathrm{top}} \pi_{\mathbf{k}}^{-1} \quad \text{if} \quad \mathbf{p}_{\mathbf{k}-\frac{1}{2}} \prec \mathbf{p}_{\mathrm{top}} \text{ (input)}$$
(3.28)

If a model layer is very thick (in terms of log p), equation 3.27 can generate an interpolated temperature value which is outside the range of temperature values on the input levels; see Swinbank and Wilson (1990) for a discussion of this type of interpolation error. If the top model layer straddles the top input level a check is made to ensure that the top output temperature is between the top two input temperatures; if this is not the case equation 3.28 is applied.

At the bottom of the atmosphere equation (3.15) is used with r=1:

$$\Theta_{\mathbf{k}} = \mathbf{T}_{1} \pi^{-1} \left[\frac{\mathbf{p}_{\mathbf{k}}}{\mathbf{p}_{1}} \right]^{\frac{\gamma R}{g}} \quad \text{if} \quad \mathbf{p}_{\mathbf{k}+\frac{1}{2}} \succ \mathbf{p}_{1} \text{ (input)}$$
(3.29)

4. TEMPORAL INTERPOLATION

Time dependent ancillary fields are available at monthly intervals. Temporal interpolation is therefore required to provide values at intermediate times.

In the simplest case, linear interpolation is used as follows to estimate the value of a field F at time t:

$$\mathbf{F}(\mathbf{t}) = \frac{(\mathbf{t}_2 - \mathbf{t})}{(\mathbf{t}_2 - \mathbf{t}_1)} \mathbf{F}(\mathbf{t}_1) + \frac{(\mathbf{t} - \mathbf{t}_1)}{(\mathbf{t}_2 - \mathbf{t}_1)} \mathbf{F}(\mathbf{t}_2)$$
(4.1)

where $F(t_1)$ and $F(t_2)$ are known and $t_1 \! \preceq \! t \! \preceq \! t_2$.

The temporal interpolation of snow depth, sea-ice surface temperature, sea-ice fraction, sea-ice thickness and SST are complicated by interdependences with other fields. For example, the melting of sea ice in the period $t_1 - t_2$ switches the definition of a grid point from sea-ice to sea. Some

knowledge of the time at which the transition takes place must be provided in order that sensible decisions can be made about the time interpolation of both SST and sea-ice temperature.

For the above fields (denoted by F) linear interpolation in time is used, except where a controlling field,

 $\boldsymbol{\zeta}$, changes from zero to non-zero. For sea fields $\boldsymbol{\zeta}$ is sea-ice fraction; for land fields $\boldsymbol{\zeta}$ is

snow depth. The fractional time, τ , between t_1 and t_2 at which this change occurs for each

point is supplied. A prescribed value, F_p , is inserted where ζ is zero. F is linearly interpolated

between its value at the time when ζ is non-zero and the prescribed value when ζ becomes

zero. If t is first converted into the fractional time between t_1 and t_2 ,

$$\alpha = \frac{\mathbf{t} - \mathbf{t}_1}{\mathbf{t}_2 - \mathbf{t}_1} \tag{4.2}$$

then the procedure adopted when ζ changes from zero to non-zero may be summarised algebraically as follows:

$$F(t) = \begin{cases} F_{p} & \alpha < \tau \text{ and } \varsigma(t_{1}) = 0 \\ \alpha \succ \tau \text{ and } \varsigma(t_{2}) = 0 \end{cases}$$

$$F(t) = \begin{cases} \frac{(1-\alpha)}{(1-\tau)} F_{p} + \frac{(\alpha-\tau)}{(1-\tau)} F(t_{2}) & \alpha \succeq \tau \text{ and } \varsigma(t_{1}) = 0 \\ \frac{(\tau-\alpha)}{\tau} F(t_{1}) + \frac{\alpha}{\tau} F_{p} & \alpha \preceq \tau \text{ and } \varsigma(t_{2}) = 0 \end{cases}$$

$$(4.3)$$

The fractional time at which the field $\boldsymbol{\zeta}$ changes from zero to non-zero or visa versa is calculated as follows:

(i) In order to simplify the procedure, each line of longitude is treated separately. A positive indicator is set at points which have a zero value at time t_1 and a non-zero value at time t_2 , and a

negative indicator at points which have a non-zero value at $\ t_1^{}$ and a zero value at $\ t_2^{}$. A zero

indicator is set at all other points.

(ii) The fractional time at which each of these points changes from zero to non-zero is calculated by searching for consecutive groups of either positive or negative indicators enclosed by zero indicators. Where such a group has a common value to the south of ς_s and to the north of ς_n , with one

of $\boldsymbol{\varsigma}_s$ or $\boldsymbol{\varsigma}_n$ zero and the other non-zero, the time of becoming zero within the group is set to

change in a linear way across the group. In all other cases a simple progression of the snow or ice edge cannot be safely assumed and the fractional time is set to 0.5.

5. EQUATORIAL LATITUDE-LONGITUDE GRID

Regional versions of the unified model use a latitude-longitude grid in which the polar singularities,

usually situated at the celestial poles, are translated along a meridian so that an equatorial latitude-longitude grid covers the integration area. Such a grid has the advantage of being more or less uniform over the whole of the integration area and avoids the need for stability filtering in the forecast model at high latitudes. In the following (λ, ϕ) and (λ', ϕ') are latitude longitude coordinates on the standard and transformed grids respectively.

5.1 Transformation formulae

Relationships between the standard latitude-longitude grid and the equatorial grid may be derived through the use of vector algebra. Let \underline{i} , \underline{j} , \underline{k} be unit vectors in Cartesian coordinates

with $\underline{\hat{\mathbf{f}}}$, $\underline{\hat{\boldsymbol{\Phi}}}$, $\underline{\hat{\boldsymbol{\lambda}}}$ and $\underline{\hat{\mathbf{f}}}$, $\underline{\hat{\boldsymbol{\Phi}}}'$, $\underline{\hat{\boldsymbol{\lambda}}}'$ unit vectors in spherical polar coordinates on the latitude-longitude and equatorial grids respectively.

The unit radius vector, corresponding to a point (λ, ϕ) on the earth's surface, may be

calculated from simple geometry (see Figure 2) and is given by

$$\hat{\mathbf{f}} = \cos\lambda \, \cos\phi \, \hat{\mathbf{i}} + \sin\lambda \, \cos\phi \, \hat{\mathbf{j}} + \sin\phi \, \hat{\mathbf{k}}$$
(5.1)

It may be assumed that the latitude of the new pole, $\phi_{\mathbf{p}}$, lies somewhere on the 180°E meridian.

This assumption is not restrictive and results may be easily generalised for translation of the pole along any meridian by first rotating the standard latitude-longitude grid through a longitudinal angle

 λ_{o} , where $\lambda_{o} = \lambda_{p} + \pi$. The radius vector of the new pole is then given by

$$\hat{\mathbf{r}}_{\mathbf{p}} = -\cos \phi_{\mathbf{p}} \, \underline{\mathbf{i}} + \sin \phi_{\mathbf{p}} \, \underline{\mathbf{k}}$$
(5.2)

The transformation is equivalent to rotating the x-z plane about the y axis by an angle

 $\pi/2-\phi_p$. $\hat{\mathbf{r}}_p$ is therefore normal to the equatorial plane of the new grid which contains the y

axis (see Figure 3). The latitude of $\underline{\hat{\mathbf{f}}}$ in the new system, $\dot{\boldsymbol{\varphi}}'$, can be found from the scalar product of vectors $\underline{\hat{\mathbf{f}}}$ and $\underline{\hat{\mathbf{f}}}$. It is given by

$$\phi' = \sin^{-1}(\hat{\mathbf{f}}.\hat{\mathbf{f}})$$
(5.3)

On substituting for $\ \hat{\underline{f}}\$ and $\ \hat{\underline{f}}\$ this becomes

$$\phi' = \sin^{-1} \left(-\cos\phi_{p} \cos(\lambda - \lambda_{o}) \cos\phi + \sin\phi_{p} \sin\phi \right)$$
(5.4)

The vector product $\underline{\hat{\mathbf{f}}} \times \underline{\hat{\mathbf{f}}}_{\underline{p}}$ can be used to obtain the new longitude λ' . It also lies on the equatorial plane of the new grid and is perpendicular to the projection of $\underline{\hat{\mathbf{f}}}$ onto this plane. The angle λ' is then obtained through the scalar product of $\underline{\hat{\mathbf{f}}} \times \underline{\hat{\mathbf{f}}}_{\underline{p}}$ and $-\underline{\mathbf{j}}'$. Thus

$$\lambda' = \cos^{-1} \left[\frac{-(\hat{\mathbf{r}} \times \hat{\mathbf{r}}) \cdot \mathbf{j}'}{|\hat{\mathbf{r}} \times \hat{\mathbf{r}}_{\underline{p}}|} \right]$$
(5.5)

On substituting for $\ \underline{\hat{f}}$ and $\ \underline{\hat{f}}$, we get

$$\lambda' = \gamma \cos^{-1} \left[\frac{\cos \phi_{\rm p} \sin \phi + \sin \phi_{\rm p} \cos(\lambda - \lambda_{\rm o}) \cos \phi}{\cos \phi'} \right]$$
(5.6)

where from global symmetry $\gamma = 1$ if $0 \le \lambda - \lambda_o \le \pi$ and $\gamma = -1$ if $-\pi \le \lambda - \lambda_o < 0$. Similar equations relating λ and ϕ to λ' and ϕ' may be obtained by reversing the above analysis. These are

$$\phi = \sin^{-1} \left(\cos \phi_{\mathbf{p}} \cos \lambda' \cos \phi' + \sin \phi_{\mathbf{p}} \sin \phi' \right)$$
(5.7)

$$\lambda = \lambda_{o} + \gamma \cos^{-1} \left[\frac{-\cos\phi_{p}\sin\phi' + \sin\phi_{p}\cos\lambda'\cos\phi'}{\cos\phi} \right]$$
(5.8)

where from global symmetry γ = 1 if $0 \preceq \lambda' \preceq \pi$ and γ = -1 if $-\pi \preceq \lambda' \prec 0$.

4.2 Wind field

Because the horizontal wind is a vector quantity, transformations between the two grids require the wind components to be resolved along the new axes. The horizontal wind vector may be expressed in terms of either coordinate system as follows:

$$\underline{\mathbf{u}} = \mathbf{u}\underline{\hat{\boldsymbol{\lambda}}} + \mathbf{v}\underline{\hat{\boldsymbol{\Phi}}} = \mathbf{u}'\underline{\hat{\boldsymbol{\lambda}}}' + \mathbf{v}'\underline{\hat{\boldsymbol{\Phi}}}'$$
(5.9)

On taking the dot product of (5.9) with each of the unit vectors, the following relationships between the 'zonal' and 'meridional' winds in each coordinate system are obtained:

$$\mathbf{u}' = \mathbf{u}\underline{\hat{\lambda}}\cdot\underline{\hat{\lambda}}' + \mathbf{v}\underline{\hat{\Phi}}\cdot\underline{\hat{\lambda}}' \text{ and } \mathbf{v}' = \mathbf{u}\underline{\hat{\lambda}}\cdot\underline{\hat{\Phi}}' + \mathbf{v}\underline{\hat{\Phi}}\cdot\underline{\hat{\Phi}}'$$
 (5.10)

$$\mathbf{u} = \mathbf{u}' \underline{\hat{\lambda}} \cdot \underline{\hat{\lambda}}' + \mathbf{v}' \underline{\hat{\lambda}} \cdot \underline{\hat{\Phi}}' \text{ and } \mathbf{v} = \mathbf{u}' \underline{\hat{\Phi}} \cdot \underline{\hat{\lambda}}' + \mathbf{v}' \underline{\hat{\Phi}} \cdot \underline{\hat{\Phi}}'$$
 (5.11)

These equations may be simplified somewhat since it follows from the dot product definition $\underline{a} \cdot \underline{b} = ab \cos \alpha$, where α is the angle between \underline{a} and \underline{b} , that

$$\underline{\hat{\lambda}} \cdot \underline{\hat{\lambda}}' = \underline{\hat{\Phi}} \cdot \underline{\hat{\Phi}}' \text{ and } \underline{\hat{\lambda}}' \cdot \underline{\hat{\Phi}} = -\underline{\hat{\lambda}} \cdot \underline{\hat{\Phi}}'$$
(5.12)

Thus

$$u' = c_1 u - c_2 v \text{ and } v' = c_1 v + c_2 u$$
 (5.13)

$$u' = c_1 u' + c_2 v'$$
 and $v = c_1 v' - c_2 u'$ (5.14)

From the theory of general orthogonal curvilinear coordinates it may be shown that

$$\underline{\hat{\lambda}} = -\sin(\lambda - \lambda_0) \underline{i} + \cos(\lambda - \lambda_0) \underline{j}$$
(5.15)

$$\hat{\underline{\phi}} = -\sin\phi \,\cos(\lambda - \lambda_0) \,\underline{i} - \sin\phi \,\sin(\lambda - \lambda_0) \,\underline{j} + \cos\phi \,\underline{k}$$
(5.16)

$$\underline{\hat{\lambda}}' = -\sin\lambda' \sin\phi_{p} \underline{i} + \cos\lambda' \underline{j} - \sin\lambda' \cos\phi_{p} \underline{k}$$
(5.17)

$$\hat{\underline{\phi}}' = - (\sin\phi' \cos\lambda' \sin\phi_p + \cos\phi' \cos\phi_p) \underline{i} - \sin\phi' \sin\lambda' \underline{j} - (\sin\phi' \cos\lambda' \cos\phi_p - \cos\phi' \sin\phi_p) \underline{k}$$
(5.18)

Thus

$$c_{1} = -\sin(\lambda - \lambda_{0})\sin\lambda' \sin\phi_{p} + \cos(\lambda - \lambda_{0})\cos\lambda'$$
(5.19)

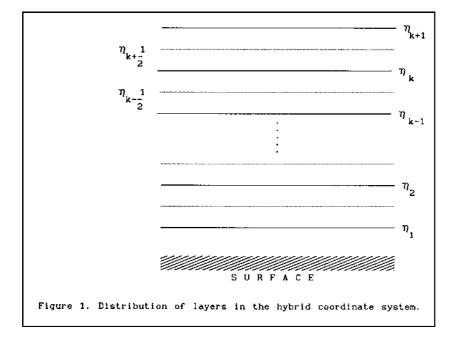
and

$$c_{2} = \sin\phi \sin\lambda' \cos(\lambda - \lambda_{0}) \sin\phi_{p} - \sin\phi \cos\lambda' \sin(\lambda - \lambda_{0}) - \sin\lambda' \cos\phi \cos\phi_{p}$$
(5.20)

In practice, since $\mathbf{c_1}$ and $\mathbf{c_2}$ are the sine and cosine of the local angle of rotation between the

grids, it follows that

$$c_1^2 + c_2^2 = 1$$
 (5.21)


and a computationally economic evaluation of c_2 may be obtained directly from equations (5.19)

and (5.21).

REFERENCES

Dickinson,A. 1984 A possible new grid and integration area for the fine mesh model. Met O 11 Working Paper No 75.

Swinbank,R. and Wilson.C 1990 Vertical interpolation of temperature observations and model data. Short Range Forecasting Research Tech Note 48.

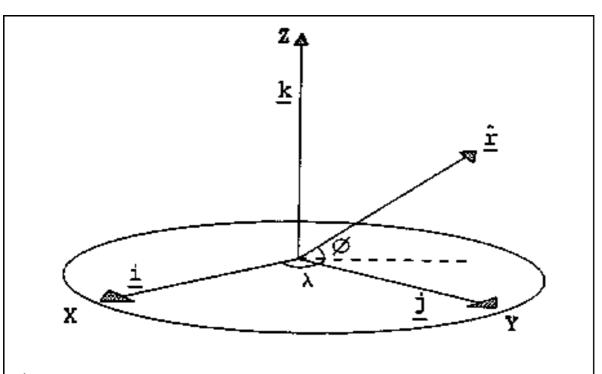
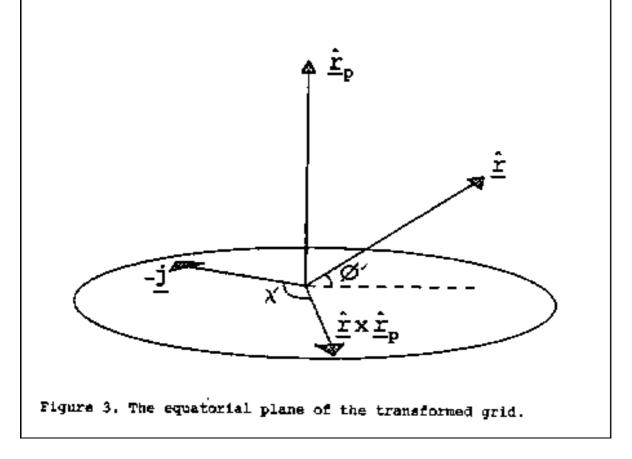



Figure 2. The equatorial plane of the standard latitude longitude grid.

APPENDIX 1

INTERPOLATION SUBROUTINE CALLS

Librarian's note: all revision information must appear at the front of the entire paper S1, which is now a single wordprocessor document.

HORIZONTAL INTERPOLATION

SUBROUTINE H_INT_INIT

Description

Interface to routines to initialise indices and weights for horizontal interpolation.

Call

CALL H_INT_INIT & (ICOF, IDIM.P_FIELD_OUT, P_ROWS_IN, P_ROWS_OUT, & ROW_LENGTH_IN, ROW_LENGTH_OUT, U_FIELD_IN, U_FIELD_OUT, & U_ROWS_IN, U_ROWS_OUT, GLOBAL, GRIB, H_INT_TYPE, FIXHD_IN, FIXHD_OUT & REALHD_IN, REALHD_OUT, AW_AREA_BOX, & AW_INDEX_TARG_LHS, AW_INDEX_TARG_TOP, & BL_INDEX_B_L, BL_INDEX_B_R, BL_INDEX_NEAREST & AW_COLAT_T, AW_LONG_L, & COEFF1, COEFF2, COEFF3, COEFF4,

& WEIGHT_B_L,WEIGHT_B_R,WEIGHT_T_L,WEIGHT_T_R)

Arguments

ICOF	INTEGER	IN	Second dimension of coefficients array
IDIM	INTEGER	IN	Second dimension of index arrays
P_FIELD_OUT	INTEGER	IN	Total number of P-points on target grid
P_ROWS_IN	INTEGER	IN	Number of P-rows on source grid
P_ROWS_OUT	INTEGER	IN	Number of P-rows on target grid
ROW_LENGTH_IN	INTEGER	IN	Number of points per row on source grid
ROW_LENGTH_OUT	INTEGER	IN	Number of points per row on target grid
U_FIELD_IN	INTEGER	IN	Total number of U-points on source grid
U_FIELD_OUT	INTEGER	IN	Total number of U-points on target grid
U_ROWS_IN	INTEGER	IN	Number of U-rows on source grid
U_ROWS_OUT	INTEGER	IN	Number of U-rows on target grid
GLOBAL	LOGICAL	IN	True if global area required
GRIB	LOGICAL	IN	True if winds imported on A-grid
H_INT_TYPE	LOGICAL	IN	True = Area weighted interpolation
			False = Bi-linear interpolation
FIXHD_IN(*)	INTEGER	IN	Fixed length header for source grid
FIXHD_OUT(*)	INTEGER	IN	Fixed length header for target grid
REALHD_IN(*)	REAL	IN	Real header for source grid
READHD_OUT(*)	REAL	IN	Real header for target grid
AW_AREA_BOX(IDIM)	REAL	IN	area of grid box in sq units of source
			grid
AW_INDEX_TARG_LHS	INTEGER	IN	Index of source box overlapping
ROW_LENGTH_OUT+1,			lhs of target grid-box
IDIM)			
AW_INDEX_TARG_TOP	INTEGER	IN	Index of source box overlapping

ROWS_OUT+1,IDIM)			top of target grid-box
BL INDEX B L(INTEGER	IN	Index of bottom lefthand corner
LEN_FIELD_OUT,			of source gridbox
IDIM)			
, BL_INDEX_B_R(INTEGER	IN	Index of bottom righthand corner
LEN_FIELD_OUT)			of source gridbox
BL_INDEX_NEAREST(INTEGER	IN	Gather index for nearest point on
IDIM)			source grid for each target P-point
AW_COLAT_T	REAL	IN	Colatitide of top of target grid-box
ROWS_OUT+1,			(in units of DELTA_LONG_SRCE)
IDIM)			
AW_LONG_L	REAL	IN	Left longitude of target grid-box
ROW_LENGTH_OUT+1,			(in units of DELTA_LONG_SRCE)
IDIM)			
COEFF1(U_FIELD_OUT,	REAL	IN	Coefficient of rotation no 1 on target
ICOF)			grid
COEFF2(U_FIELD_OUT,	REAL	IN	Coefficient of rotation no 2 on target
ICOF)			grid
COEFF3(U_FIELD_IN,	REAL	IN	Coefficient of rotation no 1 on source
ICOF)			grid
COEFF4(U_FIELD_IN,	REAL	IN	Coefficient of rotation no 2 on source
ICOF)			grid
WEIGHT_T_R(REAL	IN	Weight applied to value at top right
LEN_FIELD_OUT,			hand corner of source gridbox
IDIM)			
WEIGHT_B_L(REAL	IN	Weight applied to value at bottom left
LEN_FIELD_OUT,			hand corner of source gridbox
IDIM)			
WEIGHT_B_R(REAL	IN	Weight applied to value at bottom right
LEN_FIELD_OUT,			hand corner of source gridbox
IDIM)			
WEIGHT_T_L(REAL	IN	Weight applied to value at top left
LEN_FIELD_OUT,			hand corner of source gridbox
IDIM)			

SUBROUTINE H_INT_INIT_AW

Description

Initialises indices and weights for area weighted horizontal interpolation.

Call

CALL H_INT_INIT_AW & (ICOF,IDIM.P_FIELD_OUT,P_ROWS_IN,P_ROWS_OUT, & ROW_LENGTH_IN,ROW_LENGTH_OUT,U_FIELD_IN,U_FIELD_OUT, & U_ROWS_IN,U_ROWS_OUT,GLOBAL,GRIB,FIXHD_IN,FIXHD_OUT & REALHD_IN,REALHD_OUT,AW_AREA_BOX, & AW_INDEX_TARG_LHS,AW_INDEX_TARG_TOP, & BL_INDEX_B_L,BL_INDEX_B_R,BL_INDEX_NEAREST & AW_COLAT_T,AW_LONG_L,

& WEIGHT_B_L,WEIGHT_B_R,WEIGHT_T_L,WEIGHT_T_R)

Arguments

ICOF	INTEGER	IN	Second dimension of coefficients array
IDIM	INTEGER	IN	Second dimension of index arrays
P_FIELD_OUT	INTEGER	IN	Total number of P-points on target grid

INTEGER IN Number of P-rows on source grid P ROWS IN P_ROWS_OUT INTEGER IN Number of P-rows on target grid ROW_LENGTH_IN INTEGER IN Number of points per row on source grid ROW_LENGTH_OUT INTEGER IN Number of points per row on target grid INTEGER IN Total number of U-points on source grid U_FIELD_IN INTEGER IN Total number of U-points on target grid U_FIELD_OUT INTEGER IN Number of U-rows on source grid U_ROWS_IN U_ROWS_OUT INTEGER IN Number of U-rows on target grid LOGICAL IN True if global area required GLOBAL LOGICAL IN True if winds imported on A-grid GRIB FIXHD_IN(*)INTEGERINFixed length header for source gridFIXHD_OUT(*)INTEGERINFixed length header for target gridREALHD_IN(*)REALINReal header for source gridREADHD_OUT(*)REALINReal header for target gridAW_AREA_BOX(IDIM)REALINarea of grid box in sq units of source FIXHD_IN(*) INTEGER IN Fixed length header for source grid grid AW_INDEX_TARG_LHS INTEGER IN Index of source box overlapping ROW_LENGTH_OUT+1, lhs of target grid-box IDIM) AW_INDEX_TARG_TOP INTEGER IN Index of source box overlapping ROWS_OUT+1,IDIM) top of target grid-box BL_INDEX_B_L(INTEGER IN Index of bottom lefthand corner LEN_FIELD_OUT, of source gridbox IDIM) BL_INDEX_B_R(INTEGER IN Index of bottom righthand corner LEN_FIELD_OUT) of source gridbox BL_INDEX_NEAREST(INTEGER IN Gather index for nearest point on source grid for each target P-point IDIM) REAL IN Colatitide of top of target grid-box AW COLAT T ROWS_OUT+1, (in units of DELTA_LONG_SRCE) IDIM) AW LONG L REAL IN Left longitude of target grid-box ROW_LENGTH_OUT+1, (in units of DELTA_LONG_SRCE) IDIM) REAL IN Weight applied to value at top right WEIGHT_T_R(LEN_FIELD_OUT, hand corner of source gridbox IDIM) REAL IN Weight applied to value at bottom left WEIGHT_B_L(LEN_FIELD_OUT, hand corner of source gridbox IDIM) REAL IN Weight applied to value at bottom right WEIGHT_B_R(LEN_FIELD_OUT, hand corner of source gridbox IDIM) REAL IN Weight applied to value at top left WEIGHT_T_L(LEN_FIELD_OUT, hand corner of source gridbox IDIM)

SUBROUTINE H_INT_INIT_BL

Description

Initialises indices and weights for bilinear horizontal interpolation.

Call

CALL H_INT_INIT_BL &(ICOF,IDIM.P_FIELD_OUT,P_ROWS_IN,P_ROWS_OUT, & ROW_LENGTH_IN,ROW_LENGTH_OUT,U_FIELD_IN,U_FIELD_OUT, & U_ROWS_IN,U_ROWS_OUT,GLOBAL,GRIB,FIXHD_IN,FIXHD_OUT & REALHD_IN, REALHD_OUT, BL_INDEX_B_L, BL_INDEX_B_R, BL_INDEX_NEAREST,

& WEIGHT_B_L,WEIGHT_B_R,WEIGHT_T_L,WEIGHT_T_R)

Arguments

ICOF	INTEGER	IN	Second dimension of coefficients array
IDIM	INTEGER	IN	Second dimension of index arrays
P_FIELD_OUT	INTEGER	IN	Total number of P-points on target grid
P_ROWS_IN	INTEGER	IN	Number of P-rows on source grid
P_ROWS_OUT	INTEGER	IN	Number of P-rows on target grid
ROW_LENGTH_IN	INTEGER	IN	Number of points per row on source grid
ROW_LENGTH_OUT	INTEGER	IN	Number of points per row on target grid
U_FIELD_IN	INTEGER	IN	Total number of U-points on source grid
U_FIELD_OUT	INTEGER	IN	Total number of U-points on target grid
U_ROWS_IN	INTEGER	IN	Number of U-rows on source grid
U_ROWS_OUT	INTEGER	IN	Number of U-rows on target grid
GLOBAL	LOGICAL	IN	True if global area required
GRIB	LOGICAL	IN	True if winds imported on A-grid
FIXHD_IN(*)	INTEGER	IN	Fixed length header for source grid
FIXHD_OUT(*)	INTEGER	IN	Fixed length header for target grid
REALHD_IN(*)	REAL	IN	Real header for source grid
READHD_OUT(*)	REAL	IN	Real header for target grid
INDEX_B_L(INTEGER	IN	Index of bottom lefthand corner
LEN_FIELD_OUT,			of source gridbox
IDIM)			
INDEX_B_R(INTEGER	IN	Index of bottom righthand corner
LEN_FIELD_OUT)			of source gridbox
INDEX_NEAREST (INTEGER	IN	Gather index for nearest point on
IDIM)			source grid for each target P-point
WEIGHT_T_R(REAL	IN	Weight applied to value at top right
LEN_FIELD_OUT,			hand corner of source gridbox
IDIM)			
WEIGHT_B_L(REAL	IN	Weight applied to value at bottom left
LEN_FIELD_OUT,			hand corner of source gridbox
IDIM)			
WEIGHT_B_R(REAL	IN	Weight applied to value at bottom right
LEN_FIELD_OUT,			hand corner of source gridbox
IDIM)			
WEIGHT_T_L(REAL	IN	Weight applied to value at top left
LEN_FIELD_OUT,			hand corner of source gridbox
IDIM)			

SUBROUTINE H_INT_CTL

Description

Interface to horizontal interpolation routines H_INT_AW and H_INT_BL

Call

CALL H_INT_CTL & (IDIM.LEN_FIELD_OUT, ROW_LENGTH_IN, ROW_LENGTH_OUT, ROWS_IN, ROWS_OUT, & AW_AREA_BOX, GLOBAL, H_INT_TYPE, & AW_INDEX_TARG_LHS, AW_INDEX_TARG_TOP, BL_INDEX_B_L, BL_INDEX_B_R, & AW_COLAT_T, AW_LONG_L, DATA_IN, & WEIGHT_B_L, WEIGHT_B_R, WEIGHT_T_L, WEIGHT_T_R, DATA_OUT) Arguments

LEN_FIELD_OUTINTEGERINTotal number of points on target gridROWS_ININTEGERINNumber of rows on source gridROWS_OUTINTEGERINNumber of points per row on source gridROW_LENGTH_ININTEGERINNumber of points per row on target gridROW_LENGTH_OUTINTEGERINNumber of points per row on target gridAW_AREA_BOXREALINarea of grid box in sq units of source gridGLOBALLOGICALINTrue if global area requiredH_INT_TYPELOGICALINTrue = Area weighted interpolation False = Bi-linear interpolationAW_INDEX_TARG_LHSINTEGERINIndex of source box overlapping hs of target grid-boxAW_INDEX_BL(INTEGERINIndex of bottom lefthand corner of source gridboxBL_INDEX_BL(INTEGERINIndex of bottom righthand corner of source gridboxBL_INDEX_BR(INTEGERINIndex of bottom righthand corner of source gridboxAW_COLAT_TINTEGERINIndex of bottom righthand corner
ROWS_OUTINTEGERINNumber of rows on target gridROW_LENGTH_ININTEGERINNumber of points per row on source gridROW_LENGTH_OUTINTEGERINNumber of points per row on target gridAW_AREA_BOXREALINarea of grid box in sq units of source gridGLOBALLOGICALINTrue if global area requiredH_INT_TYPELOGICALINTrue = Area weighted interpolation False = Bi-linear interpolationAW_INDEX_TARG_LHSINTEGERINIndex of source box overlapping top of target grid-boxAW_INDEX_TARG_TOPINTEGERINIndex of source box overlapping top of target grid-boxBL_INDEX_B_L(INTEGERINIndex of bottom lefthand corner of source gridboxBL_INDEX_B_R(INTEGERINIndex of bottom righthand corner of source gridbox
ROW_LENGTH_ININTEGERINNumber of points per row on source gridROW_LENGTH_OUTINTEGERINNumber of points per row on target gridAW_AREA_BOXREALINarea of grid box in sq units of source gridGLOBALLOGICALINTrue if global area requiredH_INT_TYPELOGICALINTrue = Area weighted interpolation False = Bi-linear interpolationAW_INDEX_TARG_LHSINTEGERINIndex of source box overlapping top of target grid-boxAW_INDEX_TARG_TOPINTEGERINIndex of source box overlapping top of target grid-boxBL_INDEX_B_L(INTEGERINIndex of bottom lefthand corner of source gridboxBL_INDEX_B_R(INTEGERINIndex of bottom righthand corner of source gridbox
ROW_LENGTH_OUTINTEGERINNumber of points per row on target gridAW_AREA_BOXREALINarea of grid box in sq units of source gridGLOBALLOGICALINTrue if global area requiredH_INT_TYPELOGICALINTrue = Area weighted interpolation False = Bi-linear interpolationAW_INDEX_TARG_LHSINTEGERINIndex of source box overlapping not arget grid-boxAW_INDEX_TARG_TOPINTEGERINIndex of source box overlapping top of target grid-boxAW_INDEX_B_L(INTEGERINIndex of bottom lefthand corner of source gridboxBL_INDEX_B_R(INTEGERINIndex of bottom righthand corner of source gridbox
AW_AREA_BOXREALINarea of grid box in sq units of source gridGLOBALLOGICALINTrue if global area requiredH_INT_TYPELOGICALINTrue = Area weighted interpolation False = Bi-linear interpolationAW_INDEX_TARG_LHSINTEGERINIndex of source box overlapping hs of target grid-boxAW_INDEX_TARG_TOPINTEGERINIndex of source box overlapping top of target grid-boxAW_INDEX_B_L(INTEGERINIndex of bottom lefthand corner of source gridboxBL_INDEX_B_R(INTEGERINIndex of bottom righthand corner of source gridbox
gridGLOBALLOGICALINTrue if global area requiredH_INT_TYPELOGICALINTrue = Area weighted interpolation False = Bi-linear interpolationAW_INDEX_TARG_LHSINTEGERINIndex of source box overlapping hs of target grid-boxAW_INDEX_TARG_TOPINTEGERINIndex of source box overlapping top of target grid-boxAW_INDEX_B_L(INTEGERINIndex of bottom lefthand corner of source gridboxBL_INDEX_B_R(INTEGERINIndex of bottom righthand corner of source gridbox
GLOBALLOGICALINTrue if global area requiredH_INT_TYPELOGICALINTrue = Area weighted interpolation False = Bi-linear interpolationAW_INDEX_TARG_LHSINTEGERINIndex of source box overlapping not target grid-boxAW_INDEX_TARG_TOPINTEGERINIndex of source box overlapping top of target grid-boxAW_INDEX_B_L(INTEGERINIndex of bottom lefthand corner of source gridboxBL_INDEX_B_R(INTEGERINIndex of bottom righthand corner of source gridbox
<pre>H_INT_TYPE LOGICAL IN True = Area weighted interpolation False = Bi-linear interpolation AW_INDEX_TARG_LHS INTEGER IN Index of source box overlapping ROW_LENGTH_OUT+1) Integer IN Index of source box overlapping ROWS_OUT+1) top of target grid-box</pre>
False = Bi-linear interpolationAW_INDEX_TARG_LHSINTEGERINIndex of source box overlappingROW_LENGTH_OUT+1)Ihs of target grid-boxAW_INDEX_TARG_TOPINTEGERINIndex of source box overlappingROWS_OUT+1)top of target grid-boxBL_INDEX_B_L (INTEGERINIndex of bottom lefthand cornerLEN_FIELD_OUT)of source gridboxBL_INDEX_B_R (INTEGERINIndex of bottom righthand cornerLEN_FIELD_OUT)of source gridbox
AW_INDEX_TARG_LHSINTEGERINIndex of source box overlappingROW_LENGTH_OUT+1)lhs of target grid-boxAW_INDEX_TARG_TOPINTEGERINROWS_OUT+1)top of target grid-boxBL_INDEX_B_L(INTEGERINLEN_FIELD_OUT)of source gridboxBL_INDEX_B_R(INTEGERININTEGERINIndex of bottom righthand cornerLEN_FIELD_OUT)of source gridbox
ROW_LENGTH_OUT+1)Ihs of target grid-boxAW_INDEX_TARG_TOPINTEGERINROWS_OUT+1)top of target grid-boxBL_INDEX_B_L(INTEGERINIndex of bottom lefthand cornerof source gridboxBL_INDEX_B_R(INTEGERINIndex of bottom righthand cornerof source gridbox
AW_INDEX_TARG_TOPINTEGERINIndex of source box overlapping top of target grid-boxBL_INDEX_B_L(INTEGERINIndex of bottom lefthand corner of source gridboxBL_INDEX_B_R(INTEGERINIndex of bottom righthand corner of source gridboxLEN_FIELD_OUT)of source gridbox
ROWS_OUT+1)top of target grid-boxBL_INDEX_B_L(INTEGER INIndex of bottom lefthand cornerLEN_FIELD_OUT)of source gridboxBL_INDEX_B_R(INTEGER INIndex of bottom righthand cornerLEN_FIELD_OUT)of source gridbox
BL_INDEX_B_L(INTEGERINIndex of bottom lefthand cornerLEN_FIELD_OUT)of source gridboxBL_INDEX_B_R(INTEGERINIndex of bottom righthand cornerLEN_FIELD_OUT)of source gridbox
LEN_FIELD_OUT)of source gridboxBL_INDEX_B_R(INTEGER INIndex of bottom righthand cornerLEN_FIELD_OUT)of source gridbox
BL_INDEX_B_R(INTEGERINIndex of bottom righthand cornerLEN_FIELD_OUT)of source gridbox
LEN_FIELD_OUT) of source gridbox
-
AW COLAT T INTEGER IN Colatitide of top of target grid-box
im_consi_i in conactende of cop of carget grid-box
ROWS_OUT+1) (in units of DELTA_LONG_SRCE)
AW_LONG_L INTEGER IN Left longitude of target grid-box
ROW_LENGTH_OUT+1 (in units of DELTA_LONG_SRCE)
WEIGHT_T_R(REAL IN Weight applied to value at top right
LEN_FIELD_OUT) hand corner of source gridbox
WEIGHT_B_L(REAL IN Weight applied to value at bottom left
LEN_FIELD_OUT) hand corner of source gridbox
WEIGHT_B_R(REAL IN Weight applied to value at bottom right
LEN_FIELD_OUT) hand corner of source gridbox
WEIGHT_T_L(REAL IN Weight applied to value at top left
LEN_FIELD_OUT) hand corner of source gridbox
DATA_IN(REAL IN Data to be interpolated on source grid
ROWS_IN*
ROW_LENGTH_IN)
DATA_OUT(REAL OUT Interpolated data on target grid
ROWS_OUT*
ROW_LENGTH_OUT))

SUBROUTINE H_INT_AW

Description

Carries out area weighted horizontal interpolation using the coefficients and indices calculated in subroutine BOX_BND.

Call

CALL H_INT_AW & (ROWS_IN, ROW_LENGTH_OUT, ROW_INDEX_TARG_LHS, ROW_LENGTH_OUT, GLOBAL, & AW_INDEX_TARG_LHS, AW_INDEX_TARG_TOP, & AW_COLAT_T, AW_LONG_L, DATA_IN, DATA_OUT)

Arguments

ROWS_IN	INTEGER	IN	Number	of	rows	on	source	grid
ROWS_OUT	INTEGER	IN	Number	of	rows	on	target	grid

ROW_LENGTH_IN	INTEGER	IN	Number of points per row on source grid
ROW_LENGTH_OUT	INTEGER	IN	Number of points per row on target grid
GLOBAL	LOGICAL	IN	True if global area required
AW_INDEX_TARG_LHS	INTEGER	IN	Index of source box overlapping
ROW_LENGTH_OUT+1)			lhs of target grid-box
AW_INDEX_TARG_TOP	INTEGER	IN	Index of source box overlapping
ROWS_OUT+1)			top of target grid-box
AW_COLAT_T	INTEGER	IN	Colatitide of top of target grid-box
ROWS_OUT+1)			(in units of DELTA_LONG_SRCE)
AW_LONG_L	INTEGER	IN	Left longitude of target grid-box
ROW_LENGTH_OUT+1			(in units of DELTA_LONG_SRCE)
DATA_IN(REAL	IN	Data to be interpolated on source grid
ROWS_IN*			
ROW_LENGTH_IN)			
DATA_OUT (REAL	OUT	Interpolated data on target grid
ROWS_OUT*			
ROW_LENGTH_OUT))			

SUBROUTINE H_INT_BL

Description

Carries out bi-linear horizontal interpolation using the coefficients and gather indices calculated in subroutine $\rm H_INT_CO.$

Call

CALL H_INT_BL & (ROWS_IN,ROW_LENGTH_IN,LEN_FIELD_OUT,INDEX_B_L,INDEX_B_R,DATA_IN & WEIGHT_B_L,WEIGHT_B_R,WEIGHT_T_L,WEIGHT_T_R,DATA_OUT)

Arguments

ROWS_IN	INTEGER	IN	Number of rows on source grid
ROW_LENGTH_IN	INTEGER	IN	Number of points per row on source grid
LEN_FIELD_OUT	INTEGER	IN	Total number of points on target grid
INDEX_B_L(INTEGER	IN	Index of bottom lefthand corner
LEN_FIELD_OUT)			of source gridbox
INDEX_B_R(INTEGER	IN	Index of bottom righthand corner
LEN_FIELD_OUT)			of source gridbox
DATA_IN (REAL	IN	Data to be interpolated on source grid
ROWS_IN,			
ROW_LENGTH_IN)			
WEIGHT_T_R(REAL	IN	Weight applied to value at top right
LEN_FIELD_OUT)			hand corner of source gridbox
WEIGHT_B_L(REAL	IN	Weight applied to value at bottom left
LEN_FIELD_OUT)			hand corner of source gridbox
WEIGHT_B_R(REAL	IN	Weight applied to value at bottom right
LEN_FIELD_OUT)			hand corner of source gridbox
WEIGHT_T_L(REAL	IN	Weight applied to value at top left
LEN_FIELD_OUT)			hand corner of source gridbox
DATA_OUT (REAL	OUT	Interpolated data on target grid
LEN_FIELD_OUT)			

SUBROUTINE H_INT_CO

Description Calculates bi-linear horizontal interpolation coefficients and gather indices for interpolating between generalised latitude-longitude grids (eg non-uniform ocean grid or global, regional or rotated latitude-longitude grids). These fields are used as input to subroutines H_INT, NEAR_PT and COAST_AJ. The gather indices point to the bottom left hand and bottom right hand corners of each grid box on the source grid enclosing a target point. Two indices are ended to cater for east-west (latitudinal direction) cyclic boundaries when the source data is global or hemispheric. If the target point falls outside the area covered by the input grid, one-sided differencing is used.

Call

CALL H_INT_CO

- *(INDEX_B_L, INDEX_B_R, WEIGHT_T_R, WEIGHT_B_R, WEIGHT_T_L, WEIGHT_B_L
- *,LAMBDA_SRCE,PHI_SRCE,LAMBDA_TARG,PHI_TARG

*, POINTS_LAMBDA_SRCE, POINTS_PHI_SRCE, POINTS, CYCLIC)

Arguments

POINTS_LAMBDA_SRCE	INTEGER	IN	Number of longitude points on source grid
POINTS_PHI_SRCE	INTEGER	IN	Number of latitude points on source grid
POINTS	INTEGER	IN	Total number of points on target grid
INDEX_B_L(POINTS)	INTEGER	OUT	Index of bottom lefthand corner
			of source gridbox
INDEX_B_R (POINTS)	INTEGER	OUT	Index of bottom righthand corner
			of source gridbox
LAMBDA_TARG(POINTS)	REAL	IN	Longitude coords of each point on target
			grid
			in degrees using same rotation as source
			grid
PHI_TARG (POINTS)	REAL	IN	Latitude coords of each point on target
			grid in degrees using same rotation as
			source grid
WEIGHT_T_R(POINTS)	REAL	OUT	Weight applied to value at top right
			hand corner of source gridbox
WEIGHT_B_L(POINTS)	REAL	OUT	Weight applied to value at bottom left
			hand corner of source gridbox
WEIGHT_B_R(POINTS)	REAL	OUT	Weight applied to value at bottom right
			hand corner of source gridbox
WEIGHT_T_L(POINTS)	REAL	OUT	Weight applied to value at top left
			hand corner of source gridbox
LAMBDA_SRCE (REAL	IN	Longitude coordinates of source grid in
POINTS_LAMBDA_SRCE)		degrees
PHI_SRCE (REAL	IN	Latitude coords of source grid in degrees
POINTS_PHI_SRCE)			
CYCLIC	LOGICAL	IN	=T, then source data cyclic
			=F, then source data non-cyclic

SUBROUTINE BOX_BND

Description

Sets up longitude, colatitude and indexes of the overlapping source gridboxes at left hand side and top of target grid-boxes for use in area weighted interpolation.

Call

CALL BOX_BND

& (I_L, LONG_L, J_T, COLAT_T, AREA_BOX,

& ROW_LENGTH, ROWS, ROW_LENGTH_SRCE, ROWS_SRCE,

& DELTA_LONG, DELTA_LAT, START_LONG, START_LAT,

& DELTA_LONG_SRCE, DELTA_LAT_SRCE, START_LONG_SRCE, START_LAT_SRCE,

& IGRID, IGRID_SRCE, GLOBAL)

Arguments

I_L(ROW_LENGTH+1)	INTEGER	OUT	Index of source box overlapping lhs of target grid-box.
LONG L(ROW LENGTH+1)	DEAT	OUT	Left longitude of target grid-box.
TONG_T(KOM_TENGIU+1)	REAL	001	(in units of DELTA_LONG_SRCE)
J_T(ROWS+1)	INTEGER	OUT	Index of source box overlapping lhs of
5_1 (ROW5+1)	INIEGER	001	target grid-box.
COLAT T(ROWS+1)	REAL	OUT	Colatitude of top of target grid-box.
COLAI_I (ROWS+I)	NEAL	001	(in units of DELTA_LONG_SRCE)
		OT THE	
AREA_BOX	REAL	OUT	area of grid box in sq units of source.
ROW_LENGTH	INTEGER	IN	Number of points per row on target area.
ROWS	INTEGER	IN	Number of rows on target area.
ROW_LENGTH_SRCE	INTEGER	IN	Number of points per row on source area.
ROWS_SRCE	INTEGER	IN	Number of rows on source area.
DELTA_LONG	REAL	IN	Longitude increment of target grid (deg).
DELTA_LAT	REAL	IN	Latitude increment of target grid (deg).
START_LONG	REAL	IN	Start longitude of centre of first
			grid-box in target area.
START_LAT	REAL	IN	Start latitude of centre of first
			grid-box in target area.
DELTA_LONG_SRCE	REAL	IN	Longitude increment of source grid.
DELTA_LAT_SRCE	REAL	IN	Latitude increment of source grid.
START_LONG_SRCE	REAL	IN	Start longitude of centre of first
			grid-box in source area.
START_LAT_SRCE	REAL	IN	Start latitude of centre of first
			grid-box in source area.
IGRID	INTEGER	IN	Grid indicator 1=p-grid,2=u-grid (target)
IGRID SRCE	INTEGER	IN	Grid indicator 1=p-grid, 2=u-grid (source)
GLOBAL	LOGICAL	IN	True if global area required.
0202112		± + •	ing in growar area required.

SUBROUTINE BOX_SUM

Description

Sums contributions from gridboxes for source data on a regular lat-long grid to form means for gridboxes of a regular lat-long grid specified as target. Used in area weighted interpolation.

Call

CALL BOX_SUM
& (SOURCE_ROW_LENGTH, SOURCE_ROWS, ROW_LENGTH, ROWS,
& LONG_L, COLAT_T, I_L, J_T, GLOBAL, BOXSUM, SOURCE)

Arguments

SOURCE_ROW_LENGTHINTEGERINNumber of points per row on source area.SOURCE_ROWSINTEGERINNumber of rows on source area.ROW_LENGTHINTEGERINNumber of points per row on target area.

ROWS	INTEGER	IN	Number of rows on target area.
LONG_L(ROW_LENGTH+1)	REAL	IN	Left longitude of target grid-box.
			(in units of DELTA_LONG_SRCE)
COLAT_T(ROWS+1)	REAL	IN	Colatitude of top of target grid-box.
			(in units of DELTA_LONG_SRCE)
I_L(ROW_LENGTH+1)	INTEGER	IN	Index of source box overlapping lhs of
			target grid-box.
J_T(ROWS+1)	INTEGER	IN	Index of source box overlapping lhs of
			target grid-box.
GLOBAL	LOGICAL	IN	True if global area required.
BOXSUM (REAL	OUT	Sum of data on target grid.
ROW_LENGTH, ROWS)			
SOURCE (REAL	IN	source data.
SOURCE_ROW_LENGTH,			
SOURCE_ROWS)			

SUBROUTINE COAST_AJ

Description

(i) Produces gather indices which map each coastal point on the target grid onto its nearest point on the source grid. This allows correction of those surface fields which are non-homogeneous across land/sea boundaries after horizontal interpolation by subroutine H_INT. The algorithm uses linear interpolation weights and gather indices calculated by H_INT_CO.

(ii) If a land-sea mask for the target grid is not provided, one is created. When a target land/sea mask is provided, a further index is output containing those points on the target grid for which the 4 surrounding source points are not of the same land/sea type as the target point. These points will generally point to new islands etc that are resolved by a high resolution land/sea mask. These should be set to appropriate values (eg climatology) as required.

Call

CALL COAST_AJ * (INDEX_B_L, INDEX_B_R, WEIGHT_T_R, WEIGHT_B_R, WEIGHT_T_L, WEIGHT_B_L *, POINTS_LAMBDA_SRCE, POINTS_PHI_SRCE, POINTS, LAND_SEA_SRCE *, LAND_SEA_TARG, INDEX_TARG, INDEX_SRCE, COASTAL_POINTS, MASK *, INDEX_TARG_SEA_UNRES, SEA_POINTS_UNRES *, INDEX_TARG_LAND_UNRES, LAND_POINTS_UNRES)

Arguments

POINTS_LAMBDA_SRCE	INTEGER	IN	Number of lambda points on source grid					
POINTS_PHI_SRCE	INTEGER	IN	Number of phi points on source grid					
POINTS	INTEGER	IN	Total number of points on target grid					
COASTAL_POINTS	INTEGER	OUT	Number of coastal points on target grid					
SEA_POINTS_UNRES	INTEGER	OUT	No. of unresolved sea points when					
			MASK=T					
LAND_POINTS_UNRES	INTEGER	OUT	No. of unresolved land points when					
			MASK=T					
INDEX_B_L(POINTS)	INTEGER	IN	Index of bottom lefthand corner of					
			source gridbox					
INDEX_B_R(POINTS)	INTEGER	IN	Index of bottom righthand corner					
			of source gridbox					
LAND_SEA_TARG (POINTS)	INTEGER	OUT	Land/sea mask on target grid.					
		IN	If MASK=T then precalculated land/sea					
			mask					
LAND SEA SRCE(POINTS LAMBDA SRCE*POINTS PHI SRCE)								

LAND_SEA_SRCE(POINTS_LAMBDA_SRCE*POINTS_PHI_SRCE)

	INTEGER	IN	Land/sea mask on source grid
INDEX_TARG (POINTS)	INTEGER	OUT	Index of target coastal points
INDEX_SRCE (POINTS)	INTEGER	OUT	Index of source points mapped onto
			target coastal points
INDEX_TARG_SEA_UNRES(P	OINTS)		
	INTEGER	OUT	Index of sea points on target grid
			which are unresolved.
INDEX_TARG_LAND_UNRES(POINTS)		
	INTEGER	OUT	Index of land points on target grid
			which are unresolved.
WEIGHT_T_R(POINTS)	REAL	IN	Weight applied to value at top right
			hand corner of source gridbox
WEIGHT_B_L(POINTS)	REAL	IN	Weight applied to value at bottom left
			hand corner of source gridbox
WEIGHT_B_R(POINTS)	REAL	IN	Weight applied to value at bottom right
			hand corner of source gridbox
WEIGHT_T_L(POINTS)	REAL	IN	Weight applied to value at top left
			hand corner of source gridbox
MASK	LOGICAL	IN	=F, then l/s mask estimated
			=T, then l/s mask input as
			LAND_SEA_TARG

SUBROUTINE INTF_COAST_AJ

Description

When using the SPIRAL_S routine to set values at unresolved points. This routine acts as an interface between subroutines CONTROL and SPIRAL_S. It calculates the smallest necessary search radius NSEARCH and then calls SPIRAL_S.

Call

CALL INTF_COAST_AJ *(LAND_SEA_MASK,INDEX_UNRES,NO_POINT_UNRES,POINTS_PHI,POINTS_LAMBDA *,DATA_FIELD,SEA_LAND,CYCLIC,MAXDIM)

Arguments

ni gameneo	TH 9 dimetric b								
LAND_SEA_MASK (POINTS_LAMBDA, POINTS_PHI)									
	INTEGER	IN	Land-sea mask on target grid						
INDEX_UNRES(POINTS_LAMBDA,POINTS_PHI)									
	INTEGER	IN	Index to unresolved points						
NO_POINTS_UNRES	INTEGER	IN	Number of unresolved points						
POINTS_PHI	INTEGER	IN	Number of rows on target grid						
POINTS_LAMBDA	INTEGER	IN	Number of columns on target grid						
DATA_FIELD	REAL	IN	Data to be corrected						
		OUT	Corrected data						
SEA_LAND	INTEGER	IN	=0 for sea field =1/-1 for land field						
CYCLIC	LOGICAL	IN	=T if data covers complete latitude						
			cyclic						
MAXDIM	INTEGER	IN	Largest dimension of field						

Description

Attempts to set a value at points which are unresolved when interpolating between one grid and another. A value is set by finding the mean of surrounding points which do have data set within a search radius determined by NSEARCH.

Call

CALL SPIRAL_S *(LAND_SEA_MASK, INDEX_UNRES, NO_POINT_UNRES, POINTS_PHI, POINTS_LAMBDA *,DATA_FIELD,NSEARCH,SEA_LAND,CYCLIC)

Arguments

LAND_SEA_MASK(POINTS_LAMBDA,POINTS_PHI)								
INTEGER IN Land-sea mask on target grid								
INDEX_UNRES(POINTS_LAMBDA,POINTS_PHI)								
INTEGER IN Index to unresolved points								
NO_POINTS_UNRES	INTEGER	IN	Number of unresolved points					
POINTS_PHI	INTEGER	IN	Number of rows on target grid					
POINTS_LAMBDA INTEGER IN Number of columns on target grid								
DATA_FIELD REAL IN Data to be corrected								
OUT Corrected data								
NSEARCH	INTEGER	IN	Number of points in each direction to					
		se	arch					
SEA_LAND	INTEGER	IN	=0 for sea field =1/-1 for land field					
CYCLIC	LOGICAL	IN	=T if data covers complete latitude					
cyclic								

SUBROUTINE NEAR_PT

Description

Produces gather indices which map each point on the target grid onto its nearest point on the source grid. This allows horizontal interpolation by choosing the value of the nearest neighbour.

Call

CALL NEAR_PT(INDEX_BL, INDEX_B_R, WEIGHT_T_R, WEIGHT_B_R, WEIGHT_T_L, *, WEIGHT_B_L, POINTS, POINTS_LAMBDA_SRCE, INDEX_NEAREST)

Arguments

POINTS_LAMBDA_SRCE	INTEGER	IN	Number of lambda points on source grid
POINTS	INTEGER	IN	Total number of points on target grid
INDEX_NEAREST (POINTS)	INTEGER	OUT	Index of nearest source point to each
			target point.
INDEX_B_L(POINTS)	INTEGER	IN	Index of bottom lefthand corner
			of source gridbox
INDEX_B_R(POINTS)	INTEGER	IN	Index of bottom righthand corner
			of source gridbox
WEIGHT_T_R(POINTS)	REAL	IN	Weight applied to value at top right
			hand corner of source gridbox
WEIGHT_B_L(POINTS)	REAL	IN	Weight applied to value at bottom left
			hand corner of source gridbox
WEIGHT_B_R(POINTS)	REAL	IN	Weight applied to value at bottom right
			hand corner of source gridbox

SUBROUTINE P_TO_UV

Description

Interpolates a horizontal field from pressure to wind points on an Arakawa B grid. Under UPDATE identifier GLOBAL the data is assumed periodic along rows. Otherwise, the first and last value on each row are calculated using one-sided differencing. The output array contains one less row than the input array.

Call

CALL P_TO_UV(P_DATA,U_DATA,P_FIELD,U_FIELD,ROW_LENGTH,ROWS)

Arguments

ROWS	INTEGER	IN	Number of rows to be updated.
ROW_LENGTH	INTEGER	IN	Number of points per row
P_FIELD	INTEGER	IN	Number of points in input field
U_FIELD	INTEGER	IN	Number of points in output field
P_DATA(P_FIELD)	REAL	INOUT	Data on p points
U_DATA(U_FIELD)	REAL	OUT	Data on uv points

SUBROUTINE UV_TO_P

Description

Interpolates a horizontal field from wind to pressure points on an Arakawa B grid. Under UPDATE identifier GLOBAL the data is assumed periodic along rows. Otherwise, the first and last value on each row is calculated using one-sided differencing. The output array contains one less row than the input array.

Call

CALL UV_TO_P(U_DATA, P_DATA, U_FIELD, P_FIELD, ROW_LENGTH, ROWS)

Arguments			
ROWS	INTEGER	IN	Number of rows to be updated.
ROW_LENGTH	INTEGER	IN	Number of points per row
P_FIELD	INTEGER	IN	Number of points in output field
U_FIELD	INTEGER	IN	Number of points in input field
P_DATA(P_FIELD)	REAL	INOUT	Data on p points
U_DATA(U_FIELD)	REAL	OUT	Data on uv points

GRID TRANSFORMATIONS

SUBROUTINE EQTOLL

Description

Calculates latitude and longitude on standard grid from input arrays of latitude and longitude on equatorial latitude-longitude grid used in regional models. Both input and output latitudes and longitudes are in degrees. Output latitudes are in the range 0 - 360 .

Call

CALL EQTOLL (PHI_EQ, LAMBDA_EQ, PHI, LAMBDA, PHI_POLE, LAMBDA_POLE, POINTS)

Arguments

POINTS	INTEGER	IN	Number of points to be processed
PHI (POINTS)	REAL	OUT	Latitude
LAMBDA (POINTS)	REAL	OUT	Longitude
LAMBDA_EQ(POINTS)	REAL	IN	Longitude in equatorial lat-lon coords
PHI_EQ(POINTS)	REAL	IN	Latitude in equatorial lat-lon coords
PHI_POLE	REAL	IN	Latitude of equatorial lat-lon pole
LAMBDA_POLE	REAL	IN	Longitude of equatorial lat-lon pole

SUBROUTINE LLTOEQ

Description Calculates latitude and longitude on equatorial latitude-longitude grid used in regional models from input arrays of latitude and longitude on standard grid. Both input and output latitudes and longitudes are in degrees. Output latitudes are in the range 0 - 360.

Call

CALL LLTOEQ (PHI, LAMBDA, PHI_EQ, LAMBDA_EQ, PHI_POLE, LAMBDA_POLE, POINTS, POINTS2) Arguments INTEGER IN Number of u-points to be processed POINTS POINTS2 INTEGER IN Number of v-points to be processed PHI (POINTS) REAL IN Latitude LAMBDA (POINTS) REAL IN Longitude LAMBDA_EQ(POINTS) REAL OUT Longitude in equatorial lat-lon coords PHI_EQ(POINTS) REAL OUT Latitude in equatorial lat-lon coords REAL PHI POLE IN Latitude of equatorial lat-lon pole REAL IN Longitude of equatorial lat-lon pole LAMBDA_POLE

SUBROUTINE W_EQTOLL

Description

Calculates u and v components of wind on standard latitude-longitude grid by rotating wind components on equatorial latitude-longitude grid.

Call

CALL W_EQTOLL(COEFF1,COEFF2,U_EQ,V_EQ,U,V,POINTS)

Arguments								
POINTS	INTEGER	IN	Number	of	u-points	to	be	processed
POINTS2	INTEGER	IN	Number	of	v-points	to	be	processed

COEFF1 (POINTS)	REAL	IN	Coefficient of rotation no 1
COEFF2 (POINTS)	REAL	IN	Coefficient of rotation no 2
U_EQ(POINTS)	REAL	IN	u component of wind on equatorial grid
V_EQ(POINTS)	REAL	IN	v component of wind on equatorial grid
U(POINTS)	REAL	OUT	u component of wind on lat-lon grid
V(POINTS)	REAL	OUT	v component of wind on lat-lon grid

SUBROUTINE W_LLTOEQ

Description

Calculates u and v components of wind on equatorial latitude longitude grid by rotating wind components on standard latitude-longitude grid.

Call

CALL W_LLTOEQ(COEFF1,COEFF2,U,V,U_EQ,V_EQ,POINTS)

Arguments

POINTS	INTEGER	IN	Number of points to be processed
COEFF1 (POINTS)	REAL	IN	Coefficient of rotation no 1
COEFF2 (POINTS)	REAL	IN	Coefficient of rotation no 2
U_EQ(POINTS)	REAL	OUT	u component of wind on equatorial grid
V_EQ(POINTS)	REAL	OUT	v component of wind on equatorial grid
U(POINTS)	REAL	IN	u component of wind on lat-lon grid
V(POINTS)	REAL	IN	v component of wind on lat-lon grid

SUBROUTINE W_COEFF

Description

Calculates coefficients used to translate u and v components of wind between equatorial latitude-longitude grid and standard latitude-longitude grid (or visa versa). Output latitudes and longitudes are in degrees.

Call

CALL W_COEFF(COEFF1,COEFF2,LAMBDA,LAMBDA_EQ,PHI_POLE,LAMBDA_POLE *,POINTS)

Arguments			
POINTS	INTEGER	IN	Number of points to be processed
COEFF1 (POINTS)	REAL	OUT	Coefficient of rotation no 1
COEFF2 (POINTS)	REAL	OUT	Coefficient of rotation no 2
LAMBDA (POINTS)	REAL	IN	Longitude
LAMBDA_EQ(POINTS)	REAL	IN	Longitude in equatorial lat-lon coords
PHI_POLE	REAL	IN	Latitude of equatorial lat-lon pole
LAMBDA_POLE	REAL	IN	Longitude of equatorial pole

SUBROUTINE V_INT_ZH

Description Calculates the height of each layer boundary (half level) using the hydrostatic approximation (see equation (3.5)).

Call

CALL

V_INT_ZH(P_EXNER_HALF, THETA, Q, PHI_STAR, ZH, POINTS, P_LEVELS, Q_LEVELS)

Arguments			
POINTS	INTEGER	IN	Number of horizontal points to be
			processed
P_LEVELS	INTEGER	IN	Number of model levels
Q_LEVELS	INTEGER	IN	Number of wet levels
P_EXNER_HALF			
(POINTS, P_LEVELS+1)	REAL	IN	Exner pressure at model half
			levels
THETA (POINTS, P_LEVELS)	REAL	IN	Potential temperature at full
			levels
Q(POINTS,Q_LEVELS)	REAL	IN	Specific humidity at full levels
PHI_STAR (POINTS)	REAL	IN	Geopotential height of topography
ZH(POINTS,P_LEVELS+1)	REAL	OUT	Height of model half levels

SUBROUTINE V_INT_Z

Description

Calculates the height of an arbitrary pressure surface using the technique described in section 3.2. The top model level is currently ignored when doing the calculations.

Call

CALL V_INT_Z(P,PL,PSTAR,P_EXNER_HALF,THETA,Q,ZH,Z,POINTS * ,P_LEVELS_MODEL,Q_LEVELS_MODEL,L,AKH,BKH,START,END)

Arguments			
POINTS	INTEGER	IN	Number of points to be processed
P_LEVELS_MODEL	INTEGER	IN	Number of model levels
Q_LEVELS_MODEL	INTEGER	IN	Number of wet levels
L	INTEGER	IN	Reference level
P(POINTS)	REAL	IN	Pressure surface on which results
			required
PL(POINTS)	REAL	IN	Reference pressure at level L
PSTAR (POINTS)	REAL	IN	Surface pressure
P_EXNER_HALF (POINTS	REAL	IN	Exner pressure at model half
,P_LEVELS+1)			levels
Z(POINTS)	REAL	OUT	Height of pressure surface P
ZH(POINTS,P_LEVELS)	REAL	IN	Height of model half levels
THETA (POINTS, P_LEVELS)	REAL	IN	Potential temperature at full
			levels
Q(POINTS,Q_LEVELS)	REAL	IN	Specific humidity at full levels
AKH(P_LEVELS+1)	REAL	IN	Hybrid coord A at half levels
BKH(P_LEVELS+1)	REAL	IN	Hybrid coord B at half levels
START	INTEGER	IN	First point to be processed in

SUBROUTINE V_INT_T

Description

Calculates the temperature along an arbitrary pressure level using the technique described in section 3.3.1.

Call

END

CALL V_INT_T(T,P,PL,PSTAR,P_EXNER_HALF,THETA,POINTS,P_LEVELS,L *,AKH,BKH,START,END)

Arguments			
POINTS	INTEGER	IN	Number of points to be processed
P_LEVELS	INTEGER	IN	Number of model levels
L	INTEGER	IN	Reference level
T(POINTS)	REAL	OUT	Temperature along input pressure surface
P(POINTS)	REAL	IN	Pressure surface on which results required
PL(POINTS)	REAL	IN	Reference pressure at level L
PSTAR (POINTS)	REAL	IN	Surface pressure
P_EXNER_HALF (POINTS			
,P_LEVELS+1)	REAL	IN	Exner pressure at model half levels
THETA (POINTS, P_LEVELS)	REAL	IN	Potential temperature at full levels
AKH(P_LEVELS+1)	REAL	IN	Hybrid coord A at half levels
BKH(P_LEVELS+1)	REAL	IN	Hybrid coord B at half levels
START	INTEGER	IN	First point to be processed in POINTS dimension
END	INTEGER	IN	Last point to be processed in POINTS dimension

SUBROUTINE PMSL

Description

Calculates mean sea level pressure using the formula given by equation (3.11).

Call

CALL PMSL(P_MSL,PL,PSTAR,P_EXNER_HALF,THETA,Q,PHI_STAR,POINTS *,P_LEVELS,Q_LEVELS,L,AKH,BKH,START,END)

Arguments			
POINTS	INTEGER	IN	Number of points to be processed
P_LEVELS	INTEGER	IN	Number of model levels
Q_LEVELS	INTEGER	IN	Number of wet levels
L	INTEGER	IN	Reference level
P_MSL(POINTS)	REAL	OUT	Mean sea level pressure
PHI_STAR (POINTS)	REAL	IN	Geopotential height of topography
PL(POINTS)	REAL	IN	Reference pressure at level L
PSTAR (POINTS)	REAL	IN	Surface pressure
P_EXNER_HALF (POINTS			
,P_LEVELS+1)	REAL	IN	Exner pressure at model half

			levels
THETA (POINTS, P_LEVELS)	REAL	IN	Potential temperature at full levels
Q(POINTS,P_LEVELS)	REAL	IN	Potential temperature at full levels
AKH(P_LEVELS+1)	REAL	IN	Hybrid coord A at half levels
BKH(P_LEVELS+1)	REAL	IN	Hybrid coord B at half levels
START	INTEGER	IN	First point to be processed in
			POINTS dimension
END	INTEGER	IN	Last point to be processed in POINTS dimension

SUBROUTINE TROP

Description

Calculates tropopause temperature, pressure and height using the technique described in section 3.3.2. At those points where the tropopause cannot be determined, a missing data indicator is returned.

Call

CALL TROP (PSTAR, THETA, P_EXNER_HALF, ZH, TT, PT, ZT, POINTS, P_LEVELS &, MIN_TROP_LEVEL, AKH, BKH)

Arguments

POINTS	INTEGER	IN	Number of points to be processed
P_LEVELS	INTEGER	IN	Number of model levels
MIN_TROP_LEVEL	INTEGER	IN	Level number for lowest possible trop.
			Set to first level above boundary layer.
PSTAR (POINTS)	REAL	IN	Surface pressure
THETA (POINTS, P_LEVELS)	REAL	IN	Potential temperature at full levels
P_EXNER_HALF (POINTS	REAL	IN	Exner pressure at model half levels
,P_LEVELS+1)			
ZH(POINTS,P_LEVELS+1)	REAL	IN	Height of model half levels
TT(POINTS)	REAL	OUT	Temperature of tropopause
PT(POINTS)	REAL	OUT	Pressure of tropopause
ZT(POINTS)	REAL	OUT	Height of tropopause
AKH(P_LEVELS+1)	REAL	IN	Hybrid coord A at half levels
BKH(P_LEVELS+1)	REAL	IN	Hybrid coord B at half levels

SUBROUTINE VINT_TH

Description

Calculates potential temperature of model layers using temperatures input on an arbitrary set of pressure levels. The algorithm used is described in section 3.3.3.

Call

CALL VINT_TH(P_HALF,P_EXNER_HALF,THETA,T_SRCE,POINTS,P_SRCE,P_LEVELS, * SRCE_LEVELS,PSTAR,AKH,BKH)

Arguments

POINTS	INTEGER	IN	Number of points to be processed
P_LEVELS	INTEGER	IN	Number of model levels
SRCE_LEVELS	INTEGER	IN	Number of input levels
P_HALF (POINTS,	REAL	IN	Pressure of model half levels
P_LEVELS+1)			
P_EXNER_HALF (POINTS,	REAL	IN	Exner pressure at model half levels
P_LEVELS+1)			
THETA (POINTS, P_LEVELS)	REAL	OUT	Potential temperature at full levels
T_SRCE (POINTS,	REAL	IN	Input temperature fields
SRCE_LEVELS)			
P_SRCE (POINTS,	REAL	IN	Pressure of input temperature fields
SRCE_LEVELS)			
PSTAR (POINTS)	REAL	IN	Surface pressure
AKH(P_LEVELS+1)	REAL	IN	Hybrid coord A at half levels
BKH(P_LEVELS+1)	REAL	IN	Hybrid coord B at half levels

SUBROUTINE V_INT

Description

Performs vertical interpolation from one arbitrary set of pressure levels to another. The technique used is linear interpolation in log(p) (see section 3.1). When interpolating wind components, there is an option (controlled by MAX_WIND) for including data from max wind modelling.

Call

CALL V_INT(P_IN,P_OUT,DATA_IN,DATA_OUT,POINTS,LEVELS
* ,DATA_MAXW,P_MAXW,MAX_WIND)

Arguments

POINTS	INTEGER	IN 1	Number of points to be processed.
LEVELS	INTEGER	IN 1	Number of levels in source data.
P_IN(POINTS, LEVELS)	REAL	IN 3	3-D pressure field of source data.
P_OUT (POINTS)	REAL	IN A	Array of pressure values to be
i:	nterpola	ited	to.
DATA_IN(POINTS, LEVELS)	REAL	IN	Source data.
DATA_OUT (POINTS)	REAL	OUT	Result of interpolation.
DATA_MAXW(POINTS)	REAL	IN	Max wind data
P_MAXW(POINTS)	REAL	IN	Pressure of max wind data
MAX_WIND	LOGICAL	IN	Switch to include max winds if required.

SUBROUTINE T_INT

Description

Carries out linear interpolation in time between two fields. If the missing data indicator is present at one of the times, the value at the other time is used.

Call

CALL T_INT (DATA_T1, T1, DATA_T2, T2, DATA_T3, T3, POINTS)

Arguments

POINTS	INTEGER	IN Number of points to be processed
DATA_T1 (POINTS)	REAL	IN Data at time T1
DATA_T2(POINTS)	REAL	IN Data at time T2
DATA_T3(POINTS)	REAL	OUT Data at time T3
Τ1	REAL	IN Time of first data field
Т2	REAL	IN Time of second data field
Т3	REAL	IN Time at which new field is required T1<=T3<=T2

SUBROUTINE T_INT_C

Description

Carries out linear interpolation in time between two fields at times T1 and T2. If the missing data indicator is present at one of the times, the value at the other time is used. The interpolation is controlled by a field ZI. A prescribed value is inserted where ZI=0. If ZI changes between 0 and non-zero in the period T1 - T2, then the field is linearly interpolated between its value at the time when ZI is non-zero and the prescribed value at the time when ZI becomes zero. The fractional time at which ZI changes between 0 and non-zero in the period T1 - T2 must be provided as input. If ZI=MD, then linear interpolation is carried out using subroutine T_INT.

Call

```
CALL T_INT_C(DATA_T1,T1,DATA_T2,T2,DATA_T3,T3,POINTS *,FRAC_TIME,ZI_T1,PRES_VALUE)
```

```
Arguments
POINTS
                INTEGER IN Number of points to be processed
DATA_T1(POINTS) REAL IN Data at time T1
DATA_T2(POINTS) REAL
                       IN Data at time T2
DATA_T3(POINTS) REAL OUT Data at time T3
т1
                REAL IN Time of first data field
                REAL IN Time of second data field
т2
ТЗ
                REAL IN Time at which new field is required T1<=T3<=T2
               REAL IN Value of controlling field at T1
ZI_T1 (POINTS)
PRES_VALUE(POINTS) REAL IN Prescribed value of DATA when ZI=0
FRAC_TIME(POINTS) REAL IN Fractional time at which ZI changes between
                          zero and non-zero in this time range
```

Description

Calculates fractional time at which the control field ZI changes from zero to non-zero or visa versa. A missing data indicator is returned if no such change takes place. The algorithm assumes that the changes progress in the latitudinal direction from time T1 - T2. Used for snow depth and ice-fraction ancillary fields.

Call

CALL FRAC_TIM(DATA_T1,DATA_T2,FRAC_TIME,P_ROWS,ROW_LENGTH)

ROW_LENGTHINTEGERIN Length of rowP_ROWSINTEGERIN Number of rowsDATA_T1(ROW_LENGTH,P_ROWS)REALIN Data at time T1DATA_T2(ROW_LENGTH,P_ROWS)REALIN Data at time T2, where T1<T2</td>FRAC_TIME(ROW_LENGTH,P_ROWS)REALOUT Fractional time at which DATAchanges between zero and non-zero in this time range

RECONFIGURATION

Librarian's note: all revision information must appear at the front of the entire paper S1.

1.INTRODUCTION

The reconfiguration program has been written in a flexible way. It allows atmosphere model data to be interpolated to new resolutions and fields to be added to or subtracted from the dump. Ancillary data and separate upper air analyses may be incorporated into a dump provided that their files conform to the format described in UM Documentation Paper F3. An option to transplant sections of one dump into another is also provided. ECMWF analyses stored on pressure levels or ECMWF model levels may also be imported as GRIB code. A sample job to extract ECMWF analyses from the MARS archive is given in Section 4.

Ocean dumps may be processed so that fields may be added to or subtracted from the dump.

2.RUNNING THE PROGRAM

The functions of the program are controlled by NAMELIST inputs. These are described below. The User Interface provides access to these features in a user friendly manner.

The amount of memory required to run reconfiguration depends largely on the output resolution and the amount of ancillary data to be incorporated into the dump. On MPP machines, memory is distributed among the processors, only a small proportion being available to individual processors. This can cause problems in reconfiguring to high resolution as reconfiguration is not yet parallelized.

On the Met Office T3E, the reconfiguration executable is built using the *setlabel* command to force it to run on a high memory (64 MWord) processor instead of on a 16 MWord processor.

i.e. setlabel -1 HHIGHMEM qxrecon_dump

Reconfiguration to climate resolution will currently fit on a 16 MWord processor, but reconfiguration to operational global forecast resolution requires a 64 MWord processor. Extra options, such as incorporating several multi-layer ancillary fields, may require more memory.

NAMELIST RECON

Purpose

Sets up the dimensions of those arrays which store information at the output resolution. These values are also used to fill the appropriate entries in FIXHD_OUT and INTEGER_CONSTANTS_OUT. Note that the input dimensions are determined from the input header records.

Name	<u>Type</u>	Description	<u>Default</u>
SCALE	I	Scale factor used to initialise aerosol increments in PFtoUM stage of VAR reconfiguration	18
SUBMODEL_IDENT	I	Submodel Identifier.	.FALSE.
DUMP PACK	I	Packing Indicator	.FALSE.
LAND_POINTS_OUT	I	Number of land points on	
	-	output grid	
ANVIL FACTOR	R	Parameter required to calculate	
<u></u>	10	vertical cloud amount	
		distribution	1.0
TOWER_FACTOR	R	Parameter required to calculate	1.0
IOWER_INCION	10	vertical cloud amount	
		distribution	1.0
RIMWIDTHA	I	No of points width in	1.0
RIMUDINA	Ť	atmosphere rim fields	
P_LEVELS_OUT	I	Number of Levels	P_LEVELS_IN
Q_LEVELS_OUT	I	Number of wet levels	
	I	Number of P-rows	Q_LEVELS_IN D DOWS IN
P_ROWS_OUT	I	Row length	P_ROWS_IN
ROW_LENGTH_OUT	I	Number of tracer levels	ROW_LENGTH_IN
TR_LEVELS_OUT	T	Number of tracer levels	TR_LEVELS_IN
TR_LEVELS_ADV_OUT	I	Number of tracer levels	
		advected	TR_LEVELS_ADV_IN
TR_VARS_OUT	I	Number of tracer variables	TR_VARS_IN
ST_LEVELS_OUT	I	Number of soil temperature	
		levels	DS_LEVELS_IN
SM_LEVELS_OUT	I	Number of soil moisture levels	SM_LEVELS_IN
BL_LEVELS_OUT	I	Number of boundary layer levels	BL_LEVELS_IN
OZONE_LEVELS_OUT	I	Number of ozone levels	OZONE_LEVELS_IN
LEN_FIXHD_OUT	I	Length of fixed length header	LEN_FIXHD_IN
LEN_INTHD_OUT	I	Length of integer constant	
		block	LEN_INTH_IN
LEN_REALHD_OUT	I	Length of real constants block	LEN_REALHD_OUT
LEN2_LEVDEPC_OUT	I	2nd dim of level dependent	
		constants	LEN2_LEVDEPC_IN
LEN2_ROWDEPC_OUT	I	2nd dim of row dependent consts	LEN2_ROWDEPC_IN
LEN2_COLDEPC_OUT	I	2nd dim of column dependent	
		constants	LEN2_COLDEPC_IN
LEN1_FLDDEPC_OUT	I	1st dim of field dependent	
		constants	LEN1_FLDDEPC_IN
LEN2_FLDDEPC_OUT	1	2nd dim of field dependent	
		constants	LEN2_FLDDEPC_IN
LEN_EXTCNST_OUT	I	Length of extra consts block	LEN_EXTCNST_IN
LEN_DUMPHIST_OUT	I	Length of history block	LEN_DUMPHIST_IN
LEN_CFI1_OUT	I	Length of compressed index 1	LEN_CFI1_IN

LEN_CFI2_OUT	I	LENGTH of compressed index 2	LEN_CFI2_IN
LEN_CFI3_OUT	I	Length of compressed index 3	LEN_CFI3_IN
LEN1_LOOKUP_OUT	I	lst dim of lookup table	LEN1_LOOKUP_IN
MAX_VARIABLES_OUT	I	Number of different field types	MAX_VARIABLES_IN
GRIB	L	ECMWF grib data used as input	.FALSE.
UARS	L	Upper air data to be imported	.FALSE.
RESET	L	Set data time to verification	.FALSE.
		time in fixed length header: no	
		interpolation is done if RESET=	Т
PERTURBATION	R	Controls incorporation of ECMWF	
		ensemble perturbations.	
		= 1.0 - add in perturbation	0.0
		=-1.0 - subtract off perturbati	on
STRAT_Q	L	Reset stratospheric moisture to	.FALSE.
		climatological values using	
		subroutine STRATQ	
TRANS	L	Transplant switch	.FALSE.
SPIRAL_S	L	Use spiral coastal adjustment	.FALSE.
LCAL360	L	Use 360 day calendar	.FALSE.
LOZONE_ZONAL	L	Use zonal ozone fields	.FALSE.
LAMIPII	L	True if AMIP II run	.FALSE.

NAMELIST NSUBMODL

Purpose

Specify submodel and relevant internal models

Variables

Name	Type	Description
------	------	-------------

N_INTERNAL_MODEL I Number of internal models INTERNAL_MODEL_LIST I List of internal models SUBMODEL_FOR_IM I Submodel

NAMELIST USTSNUM

Purpose

Specify userSTASHmaster files

Name	<u>Type</u>	Description
N_USTASH		Number of userSTASHmasters
NRECS_USTASH	I	Total number of userSTASHmaster records
USTSFILS	С	Location of userSTASHmasters

NAMELIST VERTICAL

Purpose

Controls vertical interpolation by inputting Eta values at model half levels

Variables

Name	<u>Type</u>	Description	<u>Default</u>
METH_LEV_CALC	I	Method of calculating Eta values at model levels	5
ETAH(1000)	R	Eta values at model layer boundaries	s RMDI
MIN_PRS_HLEV	I	Level above which pressure	
		coordinates used	0
MAX_SIG_HLEV	I	Level below which sigma	
		coordinates used	0

NAMELIST HORIZONT

Purpose

Controls horizontal interpolation and transformation to limited area rotated grid.

Name	Type	Description	<u>Default</u>
GLOBAL	L	.T. for global model	.TRUE.
H_INT_TYPE	L	.T. for area weighted interpolation	
		.F. for bi-linear interpolation	.FALSE.
LPOLARCHK	L	.T. if non-constant polar rows are	
		to be corrected for fields on p-grid	.TRUE.
DELTA_LAMBDA	R	E_W grid length RELHD_OUT(1)	RMDI
DELTA_PHI	R	N-S grid length RELHD_OUT(2)	RMDI
LAMBDA_TLC	R	Longitude of 1st pt in row	
		RELHD_OUT(4)	0.
PHI_TLC	R	Latitude of 1st row RELHD_OUT(3)	90.
LAMBDA_NPOLE	R	Longitude of north pole	
		RELHD_OUT(6)	0.
PHI_NPOLE	R	Latitude of north pole	
		RELHD_OUT(5)	90.
IPROJ	I	Projection number FIXHD_OUT(11)	IMDI
OCEAN_BOUNDARY_CON	DITION	S	
	I	Ocean bound conds indicator	
		FIXHD_OUT(11)	0
OCEAN_DYNAMICS	I	Ocean dynamics indicator	
		FIXHD_OUT(12)	0
OCEAN_SEA_POINTS	I	Number of ocean sea points	
		INTHD_OUT(11)	0
RIM_WIDTH_NORTH_TO	POG)	Width of the border specifying the	
RIM_WIDTH_SOUTH_TO	POG }	rectangular sub-area in which the	
RIM_WIDTH_EAST_TOP	POG)	orography is set from ancillary	
RIM_WIDTH_WEST_TOP	POG)	data. Used in limited area versions.	
	I	Default 0 , ie full area	

NAMELIST HEADERS

Purpose

Overrides values set by reconfiguration in fixed length, integer and real headers.

Variables

Name	<u>Type</u>	Description	<u>Default</u>
FIXHD(256)	I	Fixed length header	No change
INTHD(100)	I	Integer constants header	No change
RELHD(100)	R	Real constants header	No change

NAMELIST ITEMS

Purpose

Controls the initialisation of fields not to be copied from the input dump.

Name	Type	Description	<u>Default</u>
ITEM	I	Item code of field	0
SOURCE	I	Source of data 1= input dump 2= ancillary field 3= set data to $0/0.0/F$ 4= set to RMDI/IMDI 5= input from tracer file 6= set to constant 7= set to field from external dump 8= Initialize from other fields in input dump. Currently only slab temperature is initialised this way though the namelist. 9= Used in VAR reconfiguration to initialize u, v, θ_1 and qt on the Charney-Phillips grid from the equivalent field on the UM gr and vice-versa	
DOMAIN	I	Area covered 1= full output area 2= sub area	0
USER_PROG_RCONST	R	Constant value for user prognostic	0.0
USER_PROG_ANCIL_FIL	ЕC	External file name containing the field to be used to initialize user prognostic	, ,
USER_PROG_ANCIL_ITE	MC I	Item code of field in above file to be used to initialize user progno	ITEM stic

TRANS

Purpose

Specifies fields and sub areas to be transposed from one dump into another.

Variables

<u>Name</u>	<u>Type</u> Default	Descript	<u>zion</u>
ITEMC	I	Item code	0
LEVEL1	I	Lowest level in range	1
LEVEL2	I	Highest level in range	P_LEVELS_OUT
ROW1	I	First row in range	1
ROW2	I	Last row in range	P_ROWS_OUT
COL1	I	First column in range	1
COL2	I	Last column in range	ROW_LENGTH_OUT

Other namelists are used by the addressing, but cover a far wider area than reconfiguration and are not covered here.

EXAMPLES

```
# Global -> Mesoscale with vertical interpolation and ancillary fields.
& RECON
SCALE=18, SUBMODEL_IDENT=1, DUMP_PACK=1, LAND_POINTS_OUT=10811,
TOWER_FACTOR=0.0, ANVIL_FACTOR=0.0, RIMWIDTHA=4,
P LEVELS OUT= 38, Q LEVELS OUT= 35, P ROWS OUT= 182, ROW LENGTH OUT= 146,
TR_LEVELS_OUT= 0, TR_VARS_OUT= 0, ST_LEVELS_OUT=3, SM_LEVELS_OUT=0,
BL_LEVELS_OUT= 14, OZONE_LEVELS_OUT=11,
LEN_FIXHD_OUT=256, LEN_INTHD_OUT=29, LEN_REALHD_OUT=38,
LEN2_LEVDEPC_OUT=6, LEN2_ROWDEPC_OUT=3, LEN2_COLDEPC_OUT=0,
LEN2_FLDDEPC_OUT=0, LEN_EXTCNST_OUT=0, LEN_DUMPHIST_OUT=0,
MAX_VARIABLES_OUT= -32768,
GRIB= .FALSE., UARS= .FALSE., RESET= .FALSE., PERTURBATION= 0.0,
TRANS= .FALSE., LSPIRAL_S= .TRUE., LCAL360=.FALSE., LOZONE_ZONAL=.FALSE.,
LAMIPII= .FALSE.
&END
&NSUBMODL
N INTERNAL MODEL=1,
INTERNAL_MODEL_LIST= 1 ,
SUBMODEL_FOR_IM= 1 ,
&END
&USTSNUM
N_USTASH= 1 , NRECS_USTASH= 0 ,
USTSFILS= "PRESM_A" & END
&VERTICAL
METH LEV CALC= 5,
ETAH= 1.00000000000,0.99760000000,0.992900000000,0.98350000000,
      0.97190000000,0.9580000000,0.9400000000,0.92100000000,
      0.90100000000, 0.8800000000, 0.85800000000, 0.83500000000,
      0.81000000000,0.78000000000,0.74500000000,0.70500000000,
      0.66000000000, 0.6100000000, 0.55500000000, 0.5000000000,
      0.45000000000,0.41000000000,0.37000000000,0.34000000000,
```

```
0.31500000000,0.2900000000,0.26500000000,0.24000000000,
    0.21500000000,0.1900000000,0.16500000000,0.14000000000,
    0.11500000000,0.0900000000,0.06500000000,0.04000000000,
    0.02000000000,0.01000000000, 0.00050000000,
 MIN_PRS_HLEV= 36, MAX_SIG_HLEV= 12,
&END
&HORTZONT
GLOBAL= .FALSE.,
DELTA_LAMBDA= 0.110000, DELTA_PHI= 0.110000,
LAMBDA_TLC= 352.9500, PHI_TLC= 11.5000,
LAMBDA NPOLE= 177.5000, PHI NPOLE= 37.5000,
RIM WIDTH NORTH TOPOG=8,
RIM WIDTH SOUTH TOPOG=8,
RIM_WIDTH_WEST_TOPOG=8,
RIM_WIDTH_EAST_TOPOG=8,
H_INT_TYPE= .FALSE.,
&END
&HEADERS
FIXHD(12) = 405,
&END
# &STSHCOMP
RUN_TARGET_END= 0 , 0 , 0 , 3 , 0 , 0 ,
OCAAA=2,
΄,
     1.1
٬,
         ',' ','
  1,1 1,1
         ٢,
'1A',' ',' ',' ',' ',' ',' 2B','1C','1A','1A','2A','0A','1A','
٠,
'OA',
EWSPACEA=0.110000, NSSPACEA=0.110000,
FRSTLATA= 11.5000, FRSTLONA= 352.9500,
POLELATA=
       37.5000, POLELONA= 177.5000,
MESO='Y',
SWBND=4, LWBND=6,
SWINC=24, LWINC=24,
OROGR='Y',
SWMCR='',
ATMOS_SR=' ','1B','1A','3A','2E','3C','0A','0A','1A',
'1A','1C','1A','1B','1C','0A','1A','1A','0A','0A','0A','
','OA','OA','OA',
- 1, 1 - 1, 1 - 1, 1 - 1, 1 - 1, 1 - 1, 1 - 1, 1 - 1, 1 - 1, 1 - 1, 1 - 1, 1 - 1, 1 - 1, 1 - 1, 1 - 1, 1 - 1, 1
΄,
  ٢,
```

```
',
' ',' ',' ','1A',
ZonAvOzone=.FALSE.,
StLevGWdrag=, BotVDiffLev=, TopVDiffLev=,
OCALB=1,
FLOOR='N',
TOTAE='Y', TOTEM='Y',
0,0,0,0,0,
SSTAnom='N',
&END
&NLSTCATM
L_SSICE_ALBEDO=.FALSE.,
L_VINT_TP=.FALSE.,
L_RHCPT=.FALSE.,
L_CLD_AREA=.FALSE.,
L_CO2_INTERACTIVE=.FALSE.,
L CO2 EMITS= .FALSE.,
L_VEG_FRACS=.FALSE.,
L_TRIFFID=.FALSE.,
L_PHENOL=.FALSE.,
L_TRIF_EQ=.FALSE.,
L NRUN MID TRIF=.FALSE.,
L_3D_CCA=.FALSE.,
L_CLOUD_DEEP=.FALSE.,
L_CCW=.FALSE.,
L_PHASE_LIM=.FALSE.,
L LSPICE=.FALSE.,
L_LSPICE_BDY=.FALSE.,
L_BL_LSPICE=.FALSE.,
L_SNOW_ALBEDO=.FALSE.,
H_SWBANDS= 4,
H_LWBANDS = 6,
A_SWEEPS_DYN= 4,
A_ADJSTEPS= 3,
A_SW_RADSTEP=12,
A_SW_SEGMENTS=1,
A_LW_RADSTEP=12,
A_LW_SEGMENTS=1,
A_CONV_STEP=1,
A_CONVECT_SEGMENTS=4,
L_RMBL=.TRUE.,
L_MIXLEN=.FALSE.,
A_ENERGYSTEPS=0,
A NSET FILTER=72,
A_ASSIM_MODE='NONE',
LEXPAND_OZONE=.FALSE.,
L_NEG_THETA=.FALSE.,
 L_NEG_PSTAR=.FALSE.,
L NEG QT=.TRUE.,
L_NEG_TSTAR=.FALSE.,
L_FIELD_FLT=.FALSE.,
L_Z0_OROG=.TRUE.,
L_HALF_TIMESTEP_DYN=.TRUE.,
L_SUPERBEE=.TRUE.,
L_TRACER_THETAL_QT=.FALSE.,
L_HALF_TIMESTEP_DIV=.TRUE.,
```

L_QT_POS_LOCAL=.TRUE., LLINTS=.TRUE., LWHITBROM=.TRUE., LGWLINP=.FALSE., LEMCORR=.FALSE., L_MURK=.TRUE., L_BL_TRACER_MIX=.FALSE., L_MOM=.FALSE., L_CAPE=.FALSE., L_SDXS=.TRUE., L_XSCOMP=.TRUE., L MURK ADVECT=.TRUE., L_MURK_SOURCE=.TRUE., L_MURK_BDRY=.TRUE., LMICROPHY=.FALSE., L_SULPC_SO2=.FALSE. L_SOOT=.FALSE. L_SO2_SURFEM=.FALSE., L SO2 HILEM=.FALSE., L_SO2_NATEM=.FALSE., L_SULPC_DMS=.FALSE., L_DMS_EM=.FALSE., L_USE_SULPC_DIRECT=.FALSE., L SULPC OZONE=.FALSE., L_SULPC_NH3=.FALSE., L_NH3_EM=.FALSE., L_USE_SULPC_INDIRECT_SW=.FALSE., L_USE_SULPC_INDIRECT_LW=.FALSE., L SOOT SUREM=.FALSE., L_SOOT_HILEM=.FALSE., L_USE_SOOT_DIRECT=.FALSE., L_CLIMAT_AEROSOL=.FALSE., LSINGLE_HYDROL=.TRUE., LMOSES=.FALSE., L_H2_SULPH=.FALSE., &END &NLSTCSLB & END ### Ancillary fields ### &ITEMS ITEM=30, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=33, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=34, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=35, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=36, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=37, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=60, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=21, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=23, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=20, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=40, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=41, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=42, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=43, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=44, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=45, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=46, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=47, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=50, DOMAIN=1, SOURCE=2, &END

&ITEMS ITEM=51, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=52, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=53, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=54, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=55, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=56, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=26, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=31, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=24, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=32, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=19, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=57, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=90, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=17, DOMAIN=1, SOURCE=2, &END &ITEMS ITEM=18, DOMAIN=1, SOURCE=2, &END ### Lateral Bounday tendancies fields ### &ITEMS ITEM=96, DOMAIN=2, SOURCE=4, &END &ITEMS ITEM=97, DOMAIN=2, SOURCE=4, &END ### Transplant data #### ## END OF FILE ### #Global to climate adding user prognostics &RECON SCALE=18, SUBMODEL_IDENT=1, DUMP_PACK=1, LAND_POINTS_OUT=2381, ANVIL_FACTOR=0.0, TOWER_FACTOR=0.0, RIMWIDTHA=1, P_LEVELS_OUT= 19, Q_LEVELS_OUT= 16, P_ROWS_OUT= 73, ROW_LENGTH_OUT= 96, TR LEVELS_OUT= 0, TR_VARS_OUT= 0, ST_LEVELS_OUT=3, SM_LEVELS_OUT=0, BL_LEVELS_OUT= 5, OZONE_LEVELS_OUT=9, LEN_FIXHD_OUT=256, LEN_INTHD_OUT=29, LEN_REALHD_OUT=38 LEN2_LEVDEPC_OUT=6, LEN2_ROWDEPC_OUT=3, LEN2_COLDEPC_OUT=0, LEN2_FLDDEPC_OUT=0, LEN_EXTCNST_OUT=0, LEN_DUMPHIST_OUT=0, MAX_VARIABLES_OUT= -32768, GRIB= .FALSE., UARS= .FALSE., RESET= .FALSE., PERTURBATION= 0.0, TRANS= .FALSE., LSPIRAL_S= .FALSE., LCAL360=.FALSE., LOZONE_ZONAL=.TRUE., LAMIPII= .FALSE. & END &NSUBMODL N_INTERNAL_MODEL=1, INTERNAL_MODEL_LIST= 1 , SUBMODEL_FOR_IM= 1 , &END &USTSNUM N_USTASH= 1 , NRECS_USTASH= 4 , USTSFILS= "PRESM A" & END &VERTICAL METH LEV CALC= 5, ETAH= 1.00000000000,0.99400000000,0.95600000000,0.90500000000, 0.83500000000,0.7500000000,0.6500000000,0.55000000000, 0.46000000000,0.38500000000,0.32500000000,0.27500000000, 0.04000000000,0.0200000000,0.01000000000,0.00050000000, MIN_PRS_HLEV= 17, MAX_SIG_HLEV= 5, &END

53

```
&HORIZONT
GLOBAL= .TRUE.,
RIM_WIDTH_NORTH_TOPOG=0,
RIM WIDTH SOUTH TOPOG=0,
RIM_WIDTH_WEST_TOPOG=0,
RIM_WIDTH_EAST_TOPOG=0,
H_INT_TYPE= .FALSE.,
&END
&HEADERS
FIXHD(12) = 405,
&END
&STSHCOMP
RUN_TARGET_END= 0 , 0 , 0 , 6 , 0 , 0 ,
OCAAA=1.
, , ,
,, ,, ,, ,
               ','
                             ',' ','1A',' ',' ',' ','
            ','
' ',' ',' ','
                   ','
',' ','
                                           ','
, ,,
     ',' ','
                      ',' ','
            ',' ',' ','
                             .,. ,,. ,,. ,,.
                                           ','
,
  ',' ',' ',' ',' ',' IA',' ',' OA',' ',' ',' ',' ',' ',' ',' ',' ','
' ','1A',' ','1A',' ','1A',' ',' ',' ',' ',' ',' ','2B','1C','1A',
'1A','1A','2A','0A','1A',' ','0A',
SWBND=4, LWBND=6,
SWINC=8, LWINC=8,
OROGR='Y',
SWMCR='N',
        ','2A','1B','3A','2C','3C','3A','1A','1A',
ATMOS SR='
'1A','1A','0A','1B','1A','0A','1A','1A','0A','1A','0A','
','1A','1A','1A',
٢,
  '','',''',''A',
ZonAvOzone=.TRUE.,
StLevGWdrag=3, BotVDiffLev=8, TopVDiffLev=14,
OCALB=1,
FLOOR='N',
TOTAE='N', TOTEM='N',
0,0,0,0,0,
SSTAnom='N',
&END
&NLSTCATM
L SSICE ALBEDO=.FALSE.,
L VINT TP=.FALSE.,
L_RHCPT=.FALSE.,
L_CLD_AREA=.FALSE.,
L_CO2_INTERACTIVE=.FALSE.,
L CO2 EMITS= .FALSE.,
L VEG FRACS=.FALSE.,
L TRIFFID=.FALSE.,
```

L_PHENOL=.FALSE., L_TRIF_EQ=.FALSE., L_NRUN_MID_TRIF=.FALSE., L_3D_CCA=.FALSE., L_CLOUD_DEEP=.FALSE., L_CCW=.FALSE., L_PHASE_LIM=.FALSE., L_LSPICE=.FALSE., L_LSPICE_BDY=.FALSE., L_BL_LSPICE=.FALSE., L_SNOW_ALBEDO=.FALSE., H SWBANDS= 4, H_LWBANDS= 6, A_SWEEPS_DYN= 1, A_ADJSTEPS= 3, A_SW_RADSTEP=9, A_SW_SEGMENTS=4, A_LW_RADSTEP=9, A LW SEGMENTS=8, A_CONV_STEP=1, A_CONVECT_SEGMENTS=2, L_RMBL=.TRUE., L_MIXLEN=.TRUE., A ENERGYSTEPS=0, A_NSET_FILTER=18, A_ASSIM_MODE='NONE', LEXPAND_OZONE=.TRUE., L_NEG_THETA=.TRUE., L_NEG_PSTAR=.TRUE., L_NEG_QT=.TRUE., L_NEG_TSTAR=.FALSE., L_FIELD_FLT=.FALSE., L_Z0_OROG=.TRUE., L_HALF_TIMESTEP_DYN=.FALSE., L_TRACER_THETAL_QT=.FALSE. , L_HALF_TIMESTEP_DIV=.FALSE., L_QT_POS_LOCAL=.FALSE., LLINTS=.TRUE., LWHITBROM=.TRUE., LGWLINP=.FALSE., LEMCORR=.FALSE., L_MURK=.FALSE., L_BL_TRACER_MIX=.FALSE L_MOM=.TRUE. L_CAPE=.FALSE., L SDXS=.FALSE., L_XSCOMP=.FALSE., L_MURK_ADVECT=.FALSE., L_MURK_SOURCE=.FALSE., L_MURK_BDRY=.FALSE., LMICROPHY=.FALSE., L_SULPC_SO2=.FALSE. L_SOOT=.FALSE. L_SO2_SURFEM=.FALSE., L_SO2_HILEM=.FALSE., L_SO2_NATEM=.FALSE., L_SULPC_DMS=.FALSE., L_DMS_EM=.FALSE.,

```
L_USE_SULPC_DIRECT=.FALSE.,
 L_SULPC_OZONE=.FALSE.,
 L_SULPC_NH3=.FALSE.,
 L NH3 EM=.FALSE.,
 L_USE_SULPC_INDIRECT_SW=.FALSE.,
 L_USE_SULPC_INDIRECT_LW=.FALSE.,
L_SOOT_SUREM=.FALSE.,
L_SOOT_HILEM=.FALSE.,
 L USE SOOT DIRECT=.FALSE.,
 L_CLIMAT_AEROSOL=.FALSE.,
LSINGLE_HYDROL=.TRUE.,
LMOSES=.FALSE.,
L_H2_SULPH=.FALSE.,
 & END
 &NLSTCSLB & END
 ### Ancillary fields ###
 &ITEMS ITEM=30, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=33, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=34, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=35, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=36, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=37, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=40, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=41, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=42, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=43, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=44, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=45, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=46, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=47, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=50, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=51, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=52, DOMAIN=1, SOURCE=2, &END
&ITEMS ITEM=53, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=54, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=55, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=56, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=26, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=31, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=24, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=32, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=19, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=17, DOMAIN=1, SOURCE=2, &END
 &ITEMS ITEM=18, DOMAIN=1, SOURCE=2, &END
 ### Atmos user-prognostic fields ###
 &ITEMS ITEM=241, DOMAIN=1, SOURCE=6, USER_PROG_RCONST=4.400000e+00 &END
&ITEMS ITEM=242, DOMAIN=1, SOURCE=7, USER_PROG_ANCIL_ITEMC=5
USER_PROG_ANCIL_FILE="/u/m11/user3/t11dg/dumps_T3E/vn4.4/atmos/userprog"
& END
 &ITEMS ITEM=243, DOMAIN=1, SOURCE=6, USER PROG RCONST=4.000000e+00 &END
 ### Transplant data ####
```

END OF FILE

The following unit numbers are used by the reconfiguration program. All files are unstructured.

UNIT NUMBER	CONTENTS
2	User Stashmaster file
18	ECMWF grib code
19	Intermediate file used when processing grib code data or when unit 20 does not
2.0	contain $\theta_{\rm L}$ or q T
20 21	Atmosphere source dump Atmosphere output dump
21	Stashmaster file
29	Upper air analyses (UARS)
30	Ozone
31	Soil moisture and snow depth
32	Deep soil temperatures
34	Vegetation types
35	Sea surface temperatures
36	Sea-ice fields
37	ECMWF perturbations
38	Sea surface currents
39	Land sea mask
40	Ocean source dump
41	Ocean output dump
48	Atmosphere tracers
49	Ocean tracers
59	Heat Convergence (SLAB)
96	Orographic fields
97	Transplant fields
109	Murkiness
110	Single level sulphur emissions
111	Single level user ancillary fields
112	Multi-level user ancillary fields
115	Natural SO2 emissions
116	Chemistry oxidants
117	Sulphate aerosol forcing
118	Surface CO2 emissions
135	Initial fractions of surface types
136	Initial vegetation state
137	Disturbed fraction of vegetation
139	Soot emissions

4. OBTAINING ECMWF ANALYSES

ECMWF analyses may be obtained by running the following jobs for a programmer with a workstation or T3E userid of user_id and a using an ECMWF userid xxx and password yyyyyy. Only those programmers registered under an ECMWF project can access this data. ip_address is the ip address of the destination machine. For NWP, it is 151.170.5.6 (fr0110). *marsfile* contains the data to be transferred and *gribfile* is the file name on the destination machine to which it is to be copied.

```
#QSUB/USER="xxx"/PASSWORD="yyyyyy"
#QSUB/CPUTIME_REQ=60
#QSUB
set -xS
cd TMPDIR
# Access MARS data under UNICOS
#
mars <<EOR
retrieve,type=an,levtype=sfc,levelist=off,
repres=gg,date=901226,time=00,target="marsfile",
param=st/sp/lsm/z, format=packed, grid=1.875/1.25, accuracy=normal.
retrieve,type=an,levtype=pl,
levelist=all,
repres=sh,date=901226,time=00,target="marsfile",param=t/u/v/r,
format=packed,grid=1.875/1.25,accuracy=normal.
end
EOR
#
# Send MARS data down link to COSMOS
#
eccopy -u user_id -h ip_address -f gribfile marsfile
```

The job accesses the pressure level archive at ECMWF via the Met Office-ECMWF link and transfers the data back to a workstation or T3E at the Met Office (The horizontal grid resolution and the analysis time and date may be changed via the parameters grid, time and date respectively. In addition, for dates prior to 15/7/86 where the surface geopotential is unavailable, param=st/msl/lsm must be coded for the surface field extraction.

If data on ECMWF hybrid vertical coordinates is required, then levtype=ml and param=t/u/v/q should be coded for upper air fields. Note that this option will not work if surface pressure and surface geopotential are not available.

There is also a method for transferring analyses to COSMOS which is used operationally, but this is not described here.

APPENDIX 3 to S1 (from FR DIVISION WORKING PAPER NO 150)

A NEW ALGORITHM FOR POTENTIAL TEMPERATURE TO TEMPERATURE CONVERSION FOR STANDARD LEVEL OUTPUT C Wilson 7 April 1993

Introduction

This is a brief note proposing a new algorithm for the output of temperature at standard pressure levels from the unified model. The new algorithm is also appropriate for the derivation of background temperature profiles used in the assimilation of locally retrieved satellite data (LASS/GLOSS).

Swinbank and Wilson (S Division Technical Note No. 48, 1990) investigated the vertical interpolation of temperature observations and model data and proposed consistent procedures based on the original choice of location of the nominal model levels as the central value of Exner pressure within a layer. This specification of Exner value at the same level as the model potential temperature enables conversion to temperature and a simple local vertical interpolation to be used for derivation of temperatures at standard pressure levels. The location of the nominal levels and specification of Exner pressure at layer "centres" has since been modified to be more consistent with the model geopotential equation and dynamical formulation. The relocated levels are lower (higher pressure) and give generally warmer temperatures, especially in the upper troposphere and stratosphere. The original formulation also resulted in a positive bias in the stratosphere but of a smaller magnitude. The bias for both formulations increases with height and is proportional to the thickness of model layers. With the reduction from 20 to 19 model layers and consequent increase in top layer thickness the error was made worse. For these reasons the question of temperature output modelling was reconsidered and the new algorithm described below was derived. The approach is to keep the internal model formulation unchanged but use a different Exner pressure formulation at model layer "centres" to convert from the model layer mean potential temperatures to temperatures at the nominal levels; interpolation from these temperatures to required output pressure levels is then linear in height as described in Swinbank and Wilson and Unified Documentation Paper S1. Alternative interpolation techniques such as cubic splines could be considered but we have chosen here to retain a local interpolation.

2) The problem

The procedure for obtaining temperatures (or heights) at an arbitrary pressure level from a numerical model which has only a finite number of layers should be as consistent as possible with both the model formulation and the observed data used in the model analysis. It is worth recalling some of the points made by Swinbank and Wilson since many of the possible procedures can lead to pitfalls:

In numerical weather prediction models it is not always immediately obvious how the temperature (or potential temperature) is defined, and how they should be related to observed temperature profiles.

The average temperature between two pressure levels is not a well-defined quantity; however in numerical models one uses a single temperature for a model layer (or level).

It is also important to ensure that the vertical interpolation used for calculating observation-analysis statistics is consistent with that used in the analysis scheme. It is possible that apparent biases may be the result of the method of calculating the statistics rather than a real bias between observations and model data.

The fundamental difficulty in the unified model is the interpretation of a model layer "average" potential temperature and assignment of a nominal level. The sensitivity to the exact location of the nominal level is due to the use of potential temperature as a model variable, particularly in the stratosphere. Using temperature as the model variable would help the output problem but would lead to similar difficulties within the model for considerations of static stability etc.

Model level assignment Current procedure

The model divides the atmosphere into a set of layers; the layer boundary locations are fundamental and are specified. Observed temperature profiles (as measured by sondes) are vertically interpolated to provide layer mean potential temperatures by matching the geopotential thickness from the observations to the form used by the model i.e.

Given a set of observed temperatures { $T_{\rm i}~$ } between a model layer with boundaries at $p_{k+1/2}~$ and $p_{k-1/2}$ the geopotential thickness is

$$\Delta \Phi = -R \int_{p_{k-1/2}}^{p_{k+1/2}} Td(lnp) = -R \sum T_{i} ln \left(\frac{p_{iu}}{p_{ib}} \right)$$
(1)

The model expression for the same thickness of a layer with mean potential temperature $~\theta_{\text{\tiny k}}$ is

$$\Delta \Phi = -c_{p} \int_{p_{k-1/2}}^{p_{k+1/2}} \Theta d\Pi = -c_{p} \Theta_{k} (\Pi_{k+1/2} - \Pi_{k-1/2})$$
(2)

$$\Pi = \left(\frac{p}{p_0}\right)^{\kappa}, \quad \kappa = \frac{R}{c_p}$$
(3)

where the Exner pressure,

Matching (1) and (2) enables θ_k to be determined.

To convert to temperature at a model level, the Exner pressure at the "centre" of the layer is required. The model value for this is consistent with the geopotential equation and the dynamical formulation. It is given by

$$\Pi_{k} = \frac{\Delta(\Pi p)_{k}}{(\kappa+1) \ \Delta p_{k}} = \frac{\Pi_{k+1/2} p_{k+1/2} - \Pi_{k-1/2} p_{k-1/2}}{(\kappa+1)(p_{k+1/2} - p_{k-1/2})}$$
(4)

so that

$$T_{k} = \prod_{k} \Theta_{k} \tag{5}$$

The original formulation of the Unified Model used the arithmetic mean of the layer boundary values for the Exner pressure at the level "centre", so:

$$\Pi_{k}^{0} = \overline{(\Pi)_{k}} = 0.5 \ (\Pi_{k=1/2} + \Pi_{k-1/2}) \tag{6}$$

Both expressions (4) and (6) can give a warm bias to the derived temperatures. A simple test profile (Fig 4) was used as input and layer mean potential temperatures derived for the standard 19 layers (Table 1) using equations (1) and (2). Output temperatures at standard pressure levels show a warm bias increasing with altitude (Table 2), discounting the large errors associated with the tropopause.

Similar errors have been found in the operational global model as shown by the observed-model temperature differences for N. Atlantic sondes for November 1992 (equation (4)) and December 1991 (equation (6)).

b) New algorithm

Consider an isothermal layer of temperature ${\tt T}$, with geopotential thickness given by

$$\Delta \Phi = -R T \ln \left(\frac{P_{k+1/2}}{P_{k-1/2}} \right)$$
(7)

which implies a model layer potential temperature $\theta_{\rm k}$, by matching using equation (2) i.e.

$$-c_{p}\Theta_{k}\left(\Pi_{k+1/2} - \Pi_{k-1/2}\right) = -RT \ln\left(\frac{p_{k+1/2}}{p_{k-1/2}}\right)$$
(8)

$$T = \prod_{m} \Theta_{k} \tag{9}$$

so that equation (8) implies that

$$-c_{p}\left(\Pi_{k+1/2} - \Pi_{k-1/2}\right) = -R \Pi_{m} \ln\left(\frac{p_{k+1/2}}{p_{k-1/2}}\right)$$

or

$$\Pi_{m} = \frac{\Pi_{k+1/2} - \Pi_{k-1/2}}{\kappa (\ln p_{k+1/2} - \ln p_{k-1/2})} = \frac{\Delta \Pi_{k}}{\kappa \Delta (\ln p)_{k}}$$
(10)

This is the proposed new expression to be used for conversion from model layer potential temperatures to temperatures for output and derivation of background temperature profiles in the processing of locally retrieved satellite data. It should give smaller errors in the stratosphere where the atmosphere is close to isothermal. In the general case, it is evident that by its construction equation (10) will always result in the layer mean temperature,

$$\overline{T} = \frac{\prod_{k=1/2}^{p_{k+1/2}} Td(\ln p)}{\int_{p_{k-1/2}}^{p_{k+1/2}} Td(\ln p)} = \frac{\prod_{k=1/2}^{p_{k-1/2}} Td(\ln p)}{\Delta(\ln p)_{k}}$$
(11)

being obtained from the layer mean θ_k . This temperature is assigned to a pressure, p_m , from Π = $(p_m \ / \ p_0)$. If temperature varies linearly with lnp across a model layer, (small) interpolation errors will result, since although the correct layer mean temperature is obtained, the nominal pressure does not equal the pressure (= $\sqrt{[p_{k+1/2} \ p_{k-1/2}]}$) where the mean temperature is attained.

A common practice in numerical models is to assign the nominal model level as located either by the arithmetic mean of the layer boundary pressures or the geometric mean of the layer boundary pressures; the latter is equivalent to finding the mean of the logarithm of the boundary pressures. The corresponding Exner pressure is given by

$$\Pi_{gm} = \sqrt{(\Pi_{k+1/2} \ \Pi_{k-1/2})}$$
(12)

This choice is most appropriate to models which use the T d(lnp) form of the geopotential equation with temperature as the model variable, and assuming that temperature varies linearly with lnp across a model layer. The relative location of these choices and those given by equations (4), (6) and the new proposal (10) are shown in Fig 5.

The test profile errors are much reduced with the new algorithm (Table 2) and are all less than 0.85K in magnitude, apart from the tropopause and the very top level, both of which cause problems to all the schemes due to the discontinuity and very thick top model layer. For comparison the errors using equation (12) are also shown; this always gives output temperatures which are too cold and are larger in magnitude than the new algorithm. The stratospheric errors are either more positive or negative depending on the relative locations of the nominal levels shown in Fig. 5.

In a global model test of the new algorithm in one 6-h assimilation the

Observation-background statistics (Table 3) show a clear reduction in bias from 300hPa upwards with slightly more observations passing the quality control. The new algorithm was also used in a recent trial of GLOSS. Verification results for sondes from the first day , which did not include any GLOSS data also show the expected reductions in bias at upper levels. For the north Atlantic and northern hemisphere regions the bias was almost reduced to zero , whilst in the Tropics and southern hemisphere there is now a smaller but negative bias . The southern hemisphere results should be treated with caution in view of the small number of radiosondes.

The geographical variation of the impact of changing to the new algorithm will depend on the time of year and temperature lapse rates which vary with season. Eg the differences found at a selection of standard pressure levels for one case, 00Z 1/02/93. The differences at 100hPa are of order 1K and increase upwards to differences of order 30-40K at 5hPa in agreement with the differences for the test profiles (Table 2, col3-col2).

4) Conclusions

The new algorithm clearly reduces the bias between observed temperatures and model output temperatures on standard pressure levels. It will also give a less biased profile for use in the radiation transfer calculations in the LASS/GLOSS system. It should therefore be implemented in all the operational versions of the unified model.

Further investigations should be done to assess whether changing to the new algorithm for all conversions between potential temperature and temperature within the model would be more accurate and beneficial. This will entail a redefinition of the model level constants.

All users of the unified model should be aware of the biases that may be due to the factors described here. Caution should be exercised when validating model temperatures, particularly at upper atmospheric levels when the model layer resolution is very coarse.

Acknowledgements.

Colin Parrett obtained the global O-B statistics, and Alan Gadd provided verification results from the GLOSS trial.

TABLE 1 Standard con	FICUEATT	ONS OF THE MC	ודדת	
The Climate, Global Fore following				ls use the
set of 19́ levels.n=A/p +	Bp , p = <u>Level</u>	10^5 Pa. The la $\underline{A}_{K+1/2}$	ayer boundaries $\underline{B}_{K+1/2}$	are given by : ¶
	$\begin{array}{c} 19.5\\ 18.5\\ 17.5\\ 16.5\\ 15.5\\ 14.5\\ 13.5\\ 12.5\\ 10.5\\ 9.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 2.5\\ 1.5\\ 2.5\\ 1.5\\ 0.5\end{array}$	$\begin{array}{c} 50.0\\ 1000.0\\ 2000.0\\ 4000.0\\ 7176.0\\ 10652.1\\ 12997.5\\ 14342.7\\ 14818.3\\ 14555.1\\ 13447.6\\ 11175.3\\ 7727.9\\ 3852.2\\ 939.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ $	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.03239\\ 0.018478\\ 0.045024\\ 0.081572\\ 0.126816\\ 0.179448\\ 0.250523\\ 0.348246\\ 0.472720\\ 0.611477\\ 0.740609\\ 0.835\\ 0.905\\ 0.956\\ 0.994\\ 1.0 \end{array}$	0.0005 0.01 0.02 0.04 0.075 0.125 0.125 0.225 0.275 0.325 0.325 0.385 0.46 0.55 0.65 0.75 0.835 0.905 0.994 1.0
Using the interpolation values:	scheme d <u>k</u>	efined follow \underline{A}_k	ying eq. (22) g <u>B</u> k	ives A_k , B_k ${f n}_{k.}$
	19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	$\begin{array}{c} \underline{}\\ 460.6\\ 1479.7\\ 2959.4\\ 5529.4\\ 8861.7\\ 11801.4\\ 13660.1\\ 14577.7\\ 14688.1\\ 14007.0\\ 12323.5\\ 9469.9\\ 5809.3\\ 2408.0\\ 472.5\\ 0.0\\ 0.0\\ 0.0\\ 0.0\end{array}$	0.0 0.0 0.0 0.01560 0.010630 0.031487 0.063026 0.103925 0.152871 0.214628 0.298868 0.409823 0.541410 0.675494 0.787503 0.869832 0.930417 0.974956 0.996999	$\begin{array}{c} 11k\\ 0.004606\\ 0.014797\\ 0.029594\\ 0.056854\\ 0.099247\\ 0.149501\\ 0.199627\\ 0.249702\\ 0.299752\\ 0.354698\\ 0.422103\\ 0.504522\\ 0.599503\\ 0.699574\\ 0.792229\\ 0.869834\\ 0.930417\\ 0.974956\\ 0.996999\end{array}$

TABLE	2
-------	---

Temperature interpolation errors (T $_{\rm out}-$ T $_{\rm in}$) / K for test profile of Fig 1.

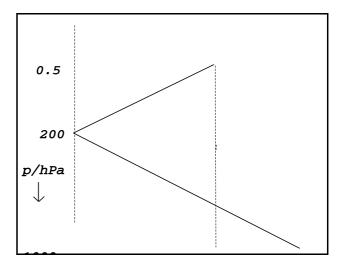

pressure/ hPa	Exner pressure at nominal level							
	mean of boundary values, eq. 6	model algorithm, eq. 4	new algorithm,eq 10	geometric mean, eq 12				
1000	-0.176	-0.171	-0.150	-0.176				
950	0.000	0.005	-0.003	-0.003				
850	-0.003	0.012	-0.010	-0.013				
700	0.001	0.040	-0.014	-0.021				
500	-0.005	0.043	-0.024	-0.034				
400	-0.027	0.014	-0.044	-0.052				
300	-0.007	0.026	-0.020	-0.026				
250	-0.012	0.029	-0.029	-0.037				
200	1.986	2.074	1.951	1.933				
150	0.257	0.704	0.081	-0.007				
100	0.464	1.589	0.025	-0.191				
70	0.555	2.063	-0.039	-0.333				
50	0.740	2.559	0.016	-0.334				
30	0.897	3.049	0.041	-0.386				
20	0.746	2.923	-0.130	-0.568				
15	0.925	3.126	0.039	-0.403				
10	3.282	15.671	-0.496	-2.107				
7	8.644	35.331	0.365	-3.160				
5	12.961	51.863	0.863	-4.325				
0.5	27.779	125.038	-2.715	-15.690				

TABLE 3						
Observation-Background temperature	(]	K)	statistics	for	radiosondes,	00z
15/12/92 data						

pressure		operational		new algorithm			
layer/ hPa	mean	rms	no passed q. control	mean	rms	no passed q.control	
1050-950	0.7	2.4	554	0.6	2.4	554	
950-850	0.3	3.0	997	0.3	3.0	997	
950-700	0.3	1.8	1123	0.4	2.0	1119	
700-500	0.3	1.3	1496	0.3	1.3	1494	
500-400	0.0	1.2	856	0.0	1.2	856	
400-300	-0.3	1.5	941	-0.2	1.5	946	
300-200	-0.3	1.7	1119	-0.2	1.7	1120	
200-100	-0.4	1.5	1209	0.0	1.5	1207	
100-70	-1.4	1.8	482	-0.3	1.3	484	
70-50	-1.8	2.5	437	0.3	1.7	440	
30-10	-2.2	3.4	501	1.6	3.3	512	
all levels	-0.2	1.8	9715	0.2	1.8	9725	

Figure 4

The variation is taken to be linear in ln(p) for the two lapse rates appropriate to an idealised troposphere and stratosphere.

