UNIFIED MODEL DOCUMENTATION NO. 77

Fourier Filtering in the Ocean Model

Unified Model Version 4.5

Graham Rickard and Steve Foreman

The Met. Office, U.K.

Reviewed by : James Penman

March, 2000

The Met. Office,
London Road,
Bracknell,
Berkshire,

RG12 25Y
United Kingdom

(c) Crown Copyright 2000
This document has not been published. Permission to quote from it must be obtained from the

Head of Ocean Applications at the above address.

Modification History

Date

Author

UM Version

Change Description

Contents
1 INTRODUCTION
2 Fourier Chopping

3 Technical Details : Ocean Filtering Subroutines

3.1 Filtering a Vector Field in the Ocean Code
4 Technical Details : Speeding Up the Filtering

A Fourier Transform Formulae for the Ocean Model
A.1 Fourier Cosine Transform
A.2 Fourier Sine Transform

A.3 Full Fourier Transform
B Sum of a Cosine Series

C Fourier Damping

12
12
14
15

17

18

1 INTRODUCTION

Finite difference models on a regular latitude-longitude grid have decreasing zonal gri-
dlength as the poles are approached. This imposes severe constraints on the timestep
of an explicit integration scheme if the integration is to remain stable. For example,

the Courant-Friedrichs-Lewy (CFL) condition for advection requires,

A

where At is the timestep, Ax is the gridlength, and “c¢” the advecting velocity. In
order to prevent the stability criteria near the poles dominating the numerical proce-
dures it is usual to impose some form of filtering of the model fields, thus reducing
the effective gridlength.

One filtering technique is known as Fourier chopping (Williamson, 1976) in which
the fields to be smoothed are Fourier analysed and waves shorter than the minimum
stable gridlength discarded. This scheme has been used in numerical weather predic-
tion (NWP) models, but was found to introduce roughnesses in the model fields at
a wavelength near to the minimum retained (Bell, 1984). A scheme was introduced
which selectively damped (rather than truncated) the unstable wavelengths, so-called
Fourier damping. This was found to produce smoother fields (Dickinson, 1985), and
is used in the present operational NWP model at the Met. Office (Cullen et al 1993).

The ocean model (Cox, 1984) has always used Fourier chopping, and the aim of
this paper is to describe the way in which this has been implemented. A method akin
to the Fourier damping of the NWP models is also detailed for completeness, even
though it has never been used. In NWP models Fast Fourier Transforms (FFTs), for
which many efficient algorithms exist (e.g. Temperton 1983), are used. The efficiency
of the FFT algorithms, especially on vector computers, relies on processing arrays
of identical length. Latitude-longitude models of the atmosphere use the technique
to filter around parallels of longitude, which are the same length at all latitudes and
heights. Ocean models, though, filter within ocean basins, so the number of points in

the filter varies with geographical position. The Cox (1984) model uses an algebraic
1

transform for this filtering, the details of which are included in this paper.

This documentation represents an updated version of an Ocean Applications in-
ternal paper by Foreman (1995) (hereafter referred to as F1) to take account of
developments related to the filtering arising from the move to parallel architecture
after F1 appeared. Furthermore, the advent of the eddy-permitting ocean model us-
ing a resolution of 1/3X1/3 degrees brought the time spent in the filtering routines
to prominence. Indeed, the original form of the filtering accounted for up to fifty per
cent of the total run time. This contrasts strongly with the present ocean compo-
nent of HadCM3 which has a resolution of 1.25X1.25 degrees, where the time spent

filtering is not significant.

2 Fourier Chopping

Numerical stability of the ocean model is ensured by removing all numerically unstable
scales of motion from the model fields. This is done using the method of Fourier

chopping. As in F1, the technique is described using the one-dimensional advection

equation,
da da
ga _ oa 9
ot~ “ox @)
In finite difference form (leap-frog, centred differences) this becomes,
aj+1 —ay b= A—x(ajJrl - ajﬂ)- (3)

Consider the solution aj to be of the form,

a = Ceap(i(jkAx)). (4)
Equation (3) then becomes
(? — 1 = 2i(rsin(kAx), (5)
where r = (cAt)/Az, i.e.,
¢ = irsin(kAz) /(1 — r2sin®(kAx)). (6)

2

Thus, if |r| <1, |¢| = 1, and the wave does not grow. More generally the requirement
is that
|rsin(kAx)| <1 (7)

for a wave to be stable. Fourier chopping imposes this condition by removing all wave
components for which this relationship does not hold.

The standard technique used to implement Fourier chopping is (for all latitudes
where |r| > 1 for some waves) to determine the wave components using a discrete
Fourier transform, discard all unstable waves, and re-combine the remaining waves to
form the filtered field. This is implemented in the ocean model using a technique which

relies on the series involved being summed analytically, as described in Appendix B.

3 Technical Details : Ocean Filtering Subroutines

At the time of writing, the filtering in the ocean code remains of the chopping rather
than damping variety. The move to parallel architecture has also meant some re-
organisation of the code in order to filter in an efficient (“load-balanced”) way. There
are some new routines described below to do this. However, at the heart of the
filtering rests OFILTR.dk, which as far as can be told is in its original form.

The routine organising the filtering of the tracers and the velocities is OFLTC-
NTL.dk. Since the filtering operates only in the vicinity of the poles it would clearly
be inefficient to do the filtering on the basis of the original ocean row-by-row decom-
position; most of the processors would remain idle waiting for those near to the poles
to complete the filtering. Thus the work is distributed over all the processors (PEs),
and the filtered fields returned to their original PEs afterwards.

How the work is distributed is set up in routine DECMFLTR.dk. Here the rows
to be filtered and their relative lengths are assessed in order to ensure that all PEs
work equally hard at the filtering. This decomposition is then put into action by
OFLTCNTL.dk from a call in TRACER.dk to deal with tracers and velocities. The
streamfunction parameter ZTD is also filtered, but via a direct call to OFILTER.dk

3

from BLOKCALC.dk.

The filtering algorithms are given by equations (A3), (A10), and (A13). Each of
these depends on N the number of points to be filtered, and p the number of modes
to be kept. A table of coefficients thus needs to be set up for the analytic result from
equation (B4), one coefficient for each grid point to be filtered. In OFILTR.dk, the
table is stored in the array FTARR. The whole formalism is based on combinations
of cosines; these combinations are setup at the outset and stored for reference in the
arrays COSSAV and DENMSV. For a given (p, N), the numerator and denominator
to give FTARR are then built out of COSSAV and DENMSV, and stored in the
elements COF and DENOM, respectively.

The value of p depends on the latitude ¢ of the row to be filtered. At a given

reference latitude ¢y, say, all modes are to be retained. Thereafter,

cos¢p

(8)

b= cosepy’

i.e, as the poles are approached fewer of the modes are kept.

Time is expended in setting up FTARR. Thus OFLTCNTL.dk passes pairs (either
uwand v or T and S) for a given (p, N), so that on the first pass FTARR is set up, but
on the second pass it is not. This is determined by the parameter ISS in OFILTR.dk,
with ISS = 0 to set up FTARR, and ISS > 0 to not do so.

To unscramble how OFILTR.dk works, the following results are required based on

Appendix B, starting with the basic result for the sum of a cosine series, viz,

[cos(P — 1)aw — cosPa] + [cos(Q + 1) — cosQa]) . (9)

Q
Z coska = — (
= 2(1 — cosa)

Examination of the transforms in Appendix A shows that terms are required for which

the coefficient @ = 0. In this limit the sum in equation (9) simply reduces to,

Q
Y 1=Q-P+1. (10)
k=P

Now consider the cosine transform. The form detailed in Appendix A takes the

sum from k = 1 to k£ = p. However this is inconsistent with the coding in OFILTR.dk.
4

This is due to the mean term f which effectively accounts for the term k = 0, so that

the sum should be over £ =1 to k = p — 1. We therefore can write,

9(wm) = f+ % iv:f(a:j) K—i - [COS(ZE; 1_)EC70gEC)OSPEDL¢m |:<%>:|]m

+ 23 fley) (-1 - [V cwl) (1)

The factors involving the cosines in the square brackets are stored in FTARR. It is

also arranged that the contribution involving cosE is zero when j = m by setting
DENOM to zero for these elements. In its full glory, FTARR is a NXN matrix,
so that the elements 7 = m lie on the matrix diagonal. In the code all elements of
FTARR are first set, with the factor FXA = 1/2 to account for the two factors of 1/4
in equation (11). A separate loop then corrects all the diagonal elements by adding
back C1 = (p—1)/2+ 1/4.

The exercise can be repeated for the sine and full transforms. For the sine trans-

form we can write,

4

o g [52555)

1=1

S |- [] (] o

In this case the correction to the diagonal terms is now Cl = p/2 + 1/4. The full

transform reduces to,

2

o) =5+ 5 2 o [(=5 - [E])] e 09

k=1

The diagonal correction term is now C2 = p + 1/2. If the original signal is to be
recovered from the full transform when p = N/2 for N even, an extra term is required
in equation (13), as detailed by equation (A13).

Having obtained FTARR, all that is left is to perform the sums on the right hand
sides of equations (11) to (13), and repeat this for each grid point in the row being

5

filtered. This appears ultimately as a matrix multiply in the code in the form,

N
SPRIME, =Y FTARR;;Sg, (14)

i=1
for j from 1 to N. SPRIME thus represents the filtered signal. There is one more
check, however, and that is to ensure that the filtered signal does not have a different
mean value from the original signal. Note that the boundary condition of zero at
either end of the row for the sine transform implies that the mean in the original
signal cannot be altered by the filtering process. The converse is true for the cosine
and full transforms. Thus for the latter two, the code initially subtracts off the mean
of the original signal (in variable STEMP = SSUM/N), obtains SPRIME and its
sum SSM, and returns the final filtered signal SFINAL via,

(SSUM — SSM)

SFINALg) = ¥

+ SPRIME). (15)

3.1 Filtering a Vector Field in the Ocean Code

Examination of OFLTCNTL.dk will reveal that the filtering of the velocity field (u,v)
is actually performed on new variables UDIF and VDIF. The filtered (u,v) is
obtained from the filtered values of UDIF and V DIF. On the surface of a sphere
along constant latitude circles, the variation of the components does not quantify how
noisy the field is. It is necessary to choose a cartesian reference frame in which to
view the field. For example, a field with a constant u (zonal) component and zero v
(meridional) component would appear to be entirely smooth in spherical coordinates,
but projected onto a two-dimensional plane is actually relatively noisy.

The cartesian components used in the ocean code are shown in Figure 2. The
top view is for the Northern hemisphere, the lower for the Southern hemisphere.
Each frame shows the relative directions of the velocity field as viewed from above
each respective pole. The meridional component v points to the North Pole, hence
v pointing away from the South Pole in the lower frame. The angle 6 here is that

referred to in the ocean code through the variables SPCOS (cosf) and SPSIN (sin#),

6

with the convention that # increases in the direction of u. The dashed lines in Figure 2
are local cartesian axes on to which the components can be projected. The particular

choices made by the ocean code are explicitly included.

4 Technical Details : Speeding Up the Filtering

As highlighted previously, it was the development of the eddy-permitting version of
the ocean model that drew attention to the filtering routines. The typical row length
in HadCM3 is 288 grid points with 144 rows, whereas the eddy-permitting model
requires 1080 grid points per row and 570 rows. This resolution increase resulted in
the filtering becoming almost half the total run time of the code, with the total run
time itself being well in excess of that required to perform meaningful climate studies.
The filtering burden clearly needed to be reduced significantly.

From the notes above, it is perhaps no surprise that the filtering became noticeably
expensive. The array FTARR comprises NXN elements, and therefore scales as N2,
and not only has there been a near four-fold increase in the row length, but the
number of rows to be filtered has also increased. On top of the time element, there
was also an extra memory burden since (as noted above) the filtering routines carry
around FTARR, COSSAV, and DENMSV from timestep to timestep. The memory
used by these arrays added quite significantly to the eddy-permitting model’s overall
requirement.

Examination of FTARR and the formulae used to determine it (see equations (11),
(12), and (13)) reveal a simple dependence on combinations of cosine terms. The
inherent symmetry of the cosine terms can then be exploited to show that the array
FTARR is symmetric about both diagonals. Thus, in principle, it is not necessary to
calculate all of the NX N elements as the reference version of OFILTR.dk does, but
only to do a quarter of the work, and fill the remaining elements as required.

Delving further in to the workings of OFILTR.dk, it transpires that the matrix
multiply in equation (14) takes up most of the time. This is evident from Table 1,

Table 1: Single Timestep Relative Timings

Section Control | Half | Quarter | Half SSYMV | Half SSPMV
OFILTR 17.8 11.3 |8.19 3.74 3.6

(1) COS 1.38 0.635 | 0.314 0.632 0.583

(1) SIN 1.26 0.552 | 0.275 0.54 0.501

(1) FULL 2.54 1.06 | 0.538 1.08 1.03

(1) TOTAL | 5.18 2.25 | 1.13 2.25 2.11

(2) SPRIME | 11.1 8.98 | 5.68 1.34 1.16

which shows relative timings within OFILTR for a single timestep. The first column
shows the original (Control) model timings within OFILTR itself, then for each of the
separate decompositions within OFILTR to set up FTARR for COSine, SINe, and
the FULL transforms followed by their TOTAL. The bottom row SPRIME indicates
the time taken to do the matrix multiply. SPRIME here accounts for over two-thirds
of OFILTR, with TOTAL accounting for the rest.

Column ‘Half’ gives the timings obtained by exploiting the symmetry about the
main diagonal. Clearly TOTAL is down by a half, and some re-ordering within
SPRIME has reduced the time there also. Column ‘Quarter’ now exploits the sym-
metry about both diagonals, halving TOTAL again, and having a further impact on
SPRIME. Quarter has now halved the Control run time. It might be thought that
SPRIME should be going down linearly. However, to perform the matrix multiply
requires judicious cycling of arguments to pick out relevant terms from those stored.
This introduces an overhead in calculating indices and then fetching the variable from
the array. There may well be room for more improvement here.

Optimisation of such an operation will depend, of course, on the machine being
used. For the T3E parallel architecture used at the time of writing, there are specific
packages designed to deal with linear algebra of the form implied by SPRIME, so-
called ‘BLAS’ routines. One package called SSYMV performs the matrix multiply

8

Table 2: Five Day Ocean Only Timings

Section Control | Half | Quarter | Half SSYMV | Half SSPMV
OFILTR TIME | 137 76 55 38 36
TOTAL TIME | 668 568 | 550 540 527

using an N XN matrix. There is not a package to deal with the double symmetry of
FTARR. However, there is a routine that exploits the symmetry about the leading
diagonal, called SSPMV. The ‘P’ here refers to ‘Packed’, in that only the upper
diagonal elements need be provided.

In the experiments here it was found that filling the matrix elements exploiting
the Quarter symmetry gave no gain over the Half symmetry when using the BLAS
routines. This appears again due to the time overhead in transferring calculated
elements into their respective slots. Thus the BLAS timings are only recorded as ‘Half
SSYMV’ and ‘Half SSPMV’. It is evident that the main impact is on the SPRIME
operation, with major speedups evident. The upshot is that our best combination
Half SSPMV has produced a five-fold decrease in the OFILTR timings.

To get a feel for the timings on a longer timescale, Table 2 shows results from
five day ocean only runs, with a forty level ocean with 1.25X1.25 degrees horizontal
spacing. The numbers now represent total CPU time. Again our best combinations
lead to a five-fold decrease in the time spent filtering, with some twenty per cent
savings in the total run time. At present, these optimisations have greatly reduced
the computational dependence of the eddy-permitting model on the filtering.

If the resolution of the ocean model is to be further enhanced, then the relatively
poor scalings associated with filtering are likely to put OFILTR.dk back in the spot-
light. The present optimisations have been sufficient to keep the filtering in check
(just). However, there remain fewer obvious ways to make it go faster. One possibility
is to store FTARR for most combinations of (p, N); while this would certainly give
nearly a halving in time, the consequent memory requirement would be enormous. It

9

is clear that future models must do away with filtering, not only from the run-time
aspect, but also to avoid the presumably none too insignificant impacts of filtering

on the physical solution being sought.

10

Acknowledgements
Thanks to Helene Banks, Doug Cresswell, and James Penman for insightful un-
scrambling of both the algorithms and algebra. Richard Hill was responsible for the
coding of the decomposition for the efficient processing of the filtering on parallel

architecture.

References

Bell, R.S. 1984: Filtering in the Met. Off. global forecast model, Met O 11
working paper No. 70.

Bryan, K 1984: Accelerating the convergence to equilibrium of ocean-climate
models, J.P.0O, 14, 666-673.

Cox, M.D. 1984: A primitive equation model of the ocean, GFDL Ocean Modelling
Group Report No. 1

Cullen, M.J.P., T. Davies, and M.H. Mawson 1993: Conservative finite difference
schemes for a unified forecast/climate model, Unified Model Documentation Paper
No. 10

Dahlquist, G. and A. Bjorck 1984: Numerical Methods (Prentice Hall).

Dickinson, A. (ed) 1985: The weather prediction model, Operational Weather
Prediction System Documentation Paper No. 4.

Foreman, S.J. 1995: Fourier filtering in the GFDL ocean model, Ocean Applica-
tions Internal Paper No. 6.

Temperton, C. 1983: Self-sorting mixed-radix Fast Fourier Transforms, J. Comp.
Phys., 52, 1-23.

Williamson, D.L. 1976: Linear stability of finite difference approximations on a

uniform latitude-longitude grid with Fourier filtering, Mon Wea Rev, 104, 31-41.

11

Appendix

A Fourier Transform Formulae for the Ocean Model

A.1 Fourier Cosine Transform

Only values at tracer gridpoints are filtered using a cosine series, and therefore the
values are at points z,,, = (m — 1/2)Az, where Az = 7 /N (there are N points to be
filtered).

Figure 1 shows how this arises. The boundary conditions of 07//0x = 0 and u = 0
are imposed at the velocity points adjacent to the first ocean tracer points along a
given row (here labelled U = 1 and U = 5). The transform is taken to be over the
interval including the boundary velocity points, thus the tracer points are staggered
by half a grid point relative to the full grid velocity points. Clearly, the boundary
conditions determine the transform applicable to each variable. In the example shown
in Figure 1, there are 4 tracer points to be filtered, hence N = 4. If the velocity points
are to be filtered, then N = 3 instead.

Let E = (m — j)Az and F = (m + j — 1)Az. The basic transform is defined by,

9 N
= — Z f(xj)coska;, (A1)
szl
and,
1 X P
g(xm) - N f(xj) + Z akCOSkxma (A2)
j=1 k=1
9 P N
= [+ =) coskay Y f(xj)coskz;
Nz j=1
_ 9 N P
= [+ N > f(x) > coskxy,coskx;
j=1 k=1
_ 2 N P coskF + coskE
= [2 flay) [),
j=1 k=1

12

using the identity
1
cosacosb = i(cos(a +b) + cos(a —b)).

The results from Appendix B are now used to give analytic results for the cosine
terms summed over the index k. A further simplification is obtained by splitting the

sum over the index j in coskE as,

coskE

Z+ > Y)Y S

j=1 j=m+1l j=m k=1

When j = m, E = 0 so that the sum over index k simply gives pf(z,,)/2. Putting
all this together we can (finally) write,

9(rm) = [+ %f(xm)

2"‘1 1 cos(p+1)E — cospE
] 1 j=m+1 (— CO8)

2 1 cos(p+1)F — cospF
+sz:1f(xj) <_Z a 4(1 — cosF)) ’

ie.,

(_ cos(p+ 1)E — cospE)

9(xm) = f+§f Tm) =N Z+ Z 17 (x3) 4(1 — cosE)

]1 Jj=m+1

2 X 1 cos(p+ 1)F — cospF
_szzlf(xj) <Z+ 4(1 — cosF) >

These formulae can be checked by setting p = N, i.e, retain all the Fourier components

so that the original signal should be recovered. Using,
cos(N + 1)jAx — cosNjAx = cosjm(cosjAx — 1)

for integer j gives,

9(@m) = f+ fam) — 5

13

Rearranging the sums results in,
1 X 1 X : .
9@m) = f(@m) + f — 5 22 (@) + 552 2 fl@) (=1)™"[(=1) 7 = (=1)’].
N3 2N =
Recalling the definition of f it is then clear that we simply recover the desired result,

viz g(2) = f(xp). Thus the basic equations (A1) and (A3) do indeed represent the

Fourier cosine transform.

A.2 Fourier Sine Transform

Only values at velocity gridpoints are filtered using a sine series, and the values are
at points 7y = kAx, k =1to k = N, where Ax = /(N +1). Figure 1 shows how the
counting arises on the velocity grid points (recalling the boundary conditions u = 0
at land points).

Here define E = (i — k)Ax, F = (i + k)Ax.

The discrete sine transform is (e.g. Dahlquist and Bjorck, 1974),

) N
b; = f(z;)sinijAx, (A4)
TN+ F
N
f(zg) = bjsinjkAx. (A5)
7=1
The filtered values are given by,
p
fr(zp) = bisinjkAw. (A6)
7j=1
Thus
(1) = oo 3 () 3 sink Ausinj A (A7)
frizg) = T sinjkAxsinij Ax.
V= (IN+ 1) & =
Now
sinijAzxsinjkAx = %[cosEj — cosFj], (A8)
so that
(04) = e 3" F) Yo lcosEEj — cosF] (49)
frlzg) = T cosEj — cosFj|.
M= N+ 1) & =

14

Using the results of Appendix B,

ff(ka

. (cos(p +1)F — cospF cos(p+ 1)E — cospE>

= L k+1 4(1 — cosF) a 4(1 — cosE)
2 p 1 cos(p+1)2kAx — cosp2kAx
+(N + l)f() (2 g 4(1 — cos2kAx) (AL0)

This is the form used in the standard model code.
As before, these formulae can be checked by setting p = N in order to recover the
original signal. The key here is to use the result,

cos (N +1)Mn/(N +1)) —cos(NMn/(N + 1))
(1 —cos(Mn/(N +1)))

= cosMm,

where M is an integer representing either (i + k), (i — k), or 2k in equation A10.

A.3 Full Fourier Transform

This applies when there are no land points in the row to be filtered. The row consists
of N independent points, such that Az = 27/N and z,, = (m — 1)Az with the
periodic condition x4, = x;. For this transform we define E' = (m — k)Ax.

There is an asymmetry in the transform, dependent on whether NV is even or odd.
From the definitions,

N

2
fxm) = 5 04 Z ajcosj(m — 1)Az +) bsing(m — 1) Az N even,
j=1

wlz

N1
a 2 . o
f(xm) = 30 + > (ajcosj(m — 1)Az + bjsinj(m — 1)Ax) N odd,
j=1
it is clear that when N is even, the cosine sum contains one less term than the sine
sum. This has consequences later when attempting to recover the original signal.

The formula for the truncated discrete Fourier transform of these /N points is,

p
f1(em) = 5+ Do(aseosj(m — 1) Az + bysinj(m — 1)Ax), (ALL)

J=1

15

where,

9 N
a; = — Y flazy)cosj(k — 1)Az,
Nz
2 N
bj = — > flay)sing(k — 1)Ax.
Nz
Thus,
Qo 2 N
frlam) == + =D fla ZCOS] — 1)Azcosj(k —1)Ax
2 N =
2 N
+ = fla Zsm] — 1)Axsing(k — 1)Ax,
Nz
ag 2 N P
filon) =— + —Z Z s(m+k —2)jAx + cosjE
2 N = =
2 & L
+ —Z ZosyE—cosm+k—2)jAa:
N j=1
ie.,
a 2p 2 m=l
ff(mm):§0+N Z+ Z 1f (z ZCOS]E

k=1 k=m+1

(A12)

Equation (A12) is exact if the number of cosine and sine terms in the truncated

series is the same. If NV is odd there are equal numbers of cosine and sine terms (see

above), and the original signal can be recovered by setting p = (N — 1)/2, and using

SN f(zx) = 0 since the mean is accounted for by ag. However, if N is even and

p = N/2 is used, it is clear that an extraneous cosine contribution has been included;

in this instance, then, an extra term must be included in equation (A12) in order to

ensure recovery of the original signal. The code chooses to subtract,

21 & 1 ol A
Zf zy)cos(k — 1)pAzcos(m — 1)pAz = —[= > f(™(—1)"]
N 2k:1
(thus giving ff(xm) = f(zm)), ie.,
ap 2p 2 m-l cos(p +1)E — cospE

16

2 N

gy 2 Lo, (A13)

This extra term is constructed in OFILTR.dk from the variable COSNPI. However,
COSNPIT is incorrectly coded with,

COSNPI(IM) = cos(IM 7/2),

and should simply be,
COSNPI(IM) = cos(IM).

Again, since Y0, f(z1) = 0, the formulae indeed return the original values.

B Sum of a Cosine Series

OFILTER.dk depends on the following result for the sum S. All transforms have
been reduced to such sums over cosines so that this analytic result can be used.

Consider the series,

Q
S =Y +lcosja, (B1)

=P
for real @ and v (o # 0). Then,

Q
S = Z'y]%expwa

b

P
Q
= R Z*y” expija |,

j=P
(B2)
so that,
S (’yQ“expi(Q + 1')04 — 7PexpiPa> (B3)
vexpia — 1

using the formula for the sum of a geometric series. Thus,

o _ g (12 [eos(@ + D+ isin(@ + 1)a] — 7" [cosPa + isinPal
N [ycosar — 1] + iysina ’

17

so that,
49 eos(Q + 1)a(ycosa — 1) + sin(Q + 1)aysing]
N (yeosar — 1)2 + 2sin’r

S

vP[cosPa(ycosa — 1) + sinParysina]

Y

(yeosa — 1)2 + 2sin’a
9 eosQa — cos(Q + 1)a] — P [ycos(P — 1)a — cosPal]
N 1 + % — 2ycosa

S

Y

giving the final result in the form,

g _ (’7Q+1[COS(Q + 1)a — cosQa] + v [ycos(P — 1) — cosPa])

B4
14+ ~2 — 2vycosa ()

For most purposes of interest v = 1, the lower limit P = 1 and the upper limit
() = p, where p represents the number of modes to be kept. For these limits the sum

becomes,

_ _1 . [cos(p + 1)ar — cospa]
o= 2 (2(1 — cosa) > (B5)

C Fourier Damping

The structure of the ocean model places a strong constraint on the computational
efficiency of a Fast Fourier Transform, making it uneconomic to implement Fourier
damping in its full form. This section describes a compromise technique which will
maintain stability with less severe effects than Fourier chopping, and which may
be implemented in the ocean model with only a small increase in the calculations
at each timestep. It represents, however, a more stringent constraint than the full
implementation of Fourier damping.

The filtered field is now taken to be,

fr(kAx) = zp:bjsin(jkAaj) + g: ay/bsin(jkAz), (C1)

j=1 Jj=p+1
where « and 7 are to be determined. It is readily seen that this is an extension of the
chopping technique. The shortest wave fully retained is still given by equation (7),

shorter waves being damped, since ay? < 1 is imposed.
18

In order to determine the values of & and 7, the growth rates of the unstable waves
must be determined. This is done by considering the numerical stability problem as
in Annex C of F1. Let the growth rate of a wave of the form sin(jkAx) be Ay. Then,

for stability to be assured,

1
a*ykgA—k for p<k<N. (C2)

Clearly, with only the values av and ~ available to fit these constraints some form of

optimal values must be chosen. One method is suggested here. Define,

1

dk:A— and D={d,:p<k<N}, (C3)
k
a = max (D). (C4)
Then set,
v = min(1/(cdy) ") : p<k<N. (C5)

This choice of o and ~ will preserve the property ay* < 1/A; (except for truncation
errors) while maintaining a larger value of v than if & = 1. Note that in most cases
a =1/A,., since waves become more unstable as their wavelength decreases.

While equation (C1) will maintain stability there will still be a marked reduction
in the amplitude of the first damped waves. This may induce spurious computational
modes, although these should be less important than in the case of Fourier chopping
due to the retention of shorter waves, albeit at reduced amplitude, and to the absence
of the abrupt changes in truncation with latitude. In practice it would be prudent to

use

(1 —e)ar” (C6)

as the damping factor for sin(kAz) for some small ¢, which may be achieved by
redefining «, in order to allow for effects not considered in the linear stability analysis.

The appropriate formulae to use may be derived from those of Appendix A, and
are given below for completeness.

Cosine Transform

19

Here, x, = (k — 1/2)Ax, E = (k — j)Az, and F = (k+ j — 1)Ax.

Frlee) = F + 3 f) -

2 kz:lJr S 1, COS(p+1)E—COSpE]
N Pl 4(1 — cosE)

2 cos(p+ 1)F — cospF
_N; f(%)[i - 4(1 — cosF)]

N+1 _ p+l
N (u
N(y—-1)

2ak1

ZZ]

j=1 j=k+1
Fe) V1 (ycospE — cos(p + 1)E) + vV (cos(N + 1)E — cosNE)]
.
J 4(1 — 2ycosE + ?2)
g: VP (ycospF — cos(p + 1)F) 4+ 7N (cos(N + 1) F — cosNF)
= 4(1 — 2ycosF + ~2)

> af(zr)

2\@

(C7)
Sine Transform

Here, zx = kAx, E = (j — k)Az, and F = (j + k)Ax.

. (cos(p +1)F — cospF' cos(p+ 1)E — COSpE>

frzg) = N—l—l Z+ Z 4(1 — cosF) - 4(1 — cosE)

j=1 j=k+1

2 1 cos2(p + 1)z, — cos2px
4 2 4(1 — cos2xy)

+N 1/
(7”“(7608191’ —cos(p+ 1)F) + 4+ (cos(N + 1) F — cosNF)>

4(1 + 42 — 27ycosF)

N+1]1 j=k+1

2a ['§+ %] (’y”“('ycospE —cos(p+ 1)E) + vV (cos(N + 1)E — cosNE)>

N+13 50 4(1 4+ % — 27ycosE)

+
(. 'V”l) flaw) | 7" (yeos2pay — cos2(p + 1)ax) + 9™ (1 — cosay)

2 4(1 + 42 — 2ycos2xy)
(C8)

20

Full Series
Here, 2, = (k—1)Awx, E = (m—k)Ax, and f the mean signal is taken to be zero.

frlen) ==X+ ¥ Ilonly + e DT | By,

k=1 k=m-+1

2¢ M1 N ,yp+1 yecospE — cos(p + 1 200 ’)’Q+1 - ’Yp+1
—Nl2+ X2 @)l ((1+ o (E))Hﬁ(m)(#)
=~ v ycosE) (v—1)
2a m—1 Z]f) r)/QJFl(fycos(Q + l)E — COSQE)]
N k=1 k=mt1 g (1+17% = 2ycosE)
25Q,N/2 4@ Z Fan)(m—l—/’c7 (C9)

where @Q = N/2 or Q = (N —1)/2 for N even or odd, respectively, and d, is zero or

one if a # b or a = b, respectively.

21

[

S I
~N L LR

Figure 1: Grid point definitions for a filtered row. The tracer points (T) are labelled

by x and the velocity points (U) by o. The hashed areas locate land. The numbers
above and below label the tracer and velocity points on the section to be filtered,

respectively.

,,,,,, _» Ucoso - vsin®

|
|
|
|

-usin® - vcoso

Figure 2: Cartesian components of velocity field for filtering along constant latitude

circles.

22

