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1 INTRODUCTIONFinite di�erene models on a regular latitude-longitude grid have dereasing zonal gri-dlength as the poles are approahed. This imposes severe onstraints on the timestepof an expliit integration sheme if the integration is to remain stable. For example,the Courant-Friedrihs-Lewy (CFL) ondition for advetion requires,�t < �x ; (1)where �t is the timestep, �x is the gridlength, and \" the adveting veloity. Inorder to prevent the stability riteria near the poles dominating the numerial proe-dures it is usual to impose some form of �ltering of the model �elds, thus reduingthe e�etive gridlength.One �ltering tehnique is known as Fourier hopping (Williamson, 1976) in whihthe �elds to be smoothed are Fourier analysed and waves shorter than the minimumstable gridlength disarded. This sheme has been used in numerial weather predi-tion (NWP) models, but was found to introdue roughnesses in the model �elds ata wavelength near to the minimum retained (Bell, 1984). A sheme was introduedwhih seletively damped (rather than trunated) the unstable wavelengths, so-alledFourier damping. This was found to produe smoother �elds (Dikinson, 1985), andis used in the present operational NWP model at the Met. OÆe (Cullen et al 1993).The oean model (Cox, 1984) has always used Fourier hopping, and the aim ofthis paper is to desribe the way in whih this has been implemented. A method akinto the Fourier damping of the NWP models is also detailed for ompleteness, eventhough it has never been used. In NWP models Fast Fourier Transforms (FFTs), forwhih many eÆient algorithms exist (e.g. Temperton 1983), are used. The eÆienyof the FFT algorithms, espeially on vetor omputers, relies on proessing arraysof idential length. Latitude-longitude models of the atmosphere use the tehniqueto �lter around parallels of longitude, whih are the same length at all latitudes andheights. Oean models, though, �lter within oean basins, so the number of points inthe �lter varies with geographial position. The Cox (1984) model uses an algebrai1



transform for this �ltering, the details of whih are inluded in this paper.This doumentation represents an updated version of an Oean Appliations in-ternal paper by Foreman (1995) (hereafter referred to as F1) to take aount ofdevelopments related to the �ltering arising from the move to parallel arhitetureafter F1 appeared. Furthermore, the advent of the eddy-permitting oean model us-ing a resolution of 1/3X1/3 degrees brought the time spent in the �ltering routinesto prominene. Indeed, the original form of the �ltering aounted for up to �fty perent of the total run time. This ontrasts strongly with the present oean ompo-nent of HadCM3 whih has a resolution of 1.25X1.25 degrees, where the time spent�ltering is not signi�ant.2 Fourier ChoppingNumerial stability of the oean model is ensured by removing all numerially unstablesales of motion from the model �elds. This is done using the method of Fourierhopping. As in F1, the tehnique is desribed using the one-dimensional advetionequation, �a�t = �a�x: (2)In �nite di�erene form (leap-frog, entred di�erenes) this beomes,an+1j � an�1j = �t�x (anj+1 � anj�1): (3)Consider the solution anj to be of the form,anj = �nj exp(i(jk�x)): (4)Equation (3) then beomes �2 � 1 = 2i�rsin(k�x); (5)where r = (�t)=�x, i.e.,� = irsin(k�x)�q(1� r2sin2(k�x)): (6)2



Thus, if jrj � 1, j�j = 1, and the wave does not grow. More generally the requirementis that jrsin(k�x)j � 1 (7)for a wave to be stable. Fourier hopping imposes this ondition by removing all waveomponents for whih this relationship does not hold.The standard tehnique used to implement Fourier hopping is (for all latitudeswhere jrj > 1 for some waves) to determine the wave omponents using a disreteFourier transform, disard all unstable waves, and re-ombine the remaining waves toform the �ltered �eld. This is implemented in the oean model using a tehnique whihrelies on the series involved being summed analytially, as desribed in Appendix B.3 Tehnial Details : Oean Filtering SubroutinesAt the time of writing, the �ltering in the oean ode remains of the hopping ratherthan damping variety. The move to parallel arhiteture has also meant some re-organisation of the ode in order to �lter in an eÆient (\load-balaned") way. Thereare some new routines desribed below to do this. However, at the heart of the�ltering rests OFILTR.dk, whih as far as an be told is in its original form.The routine organising the �ltering of the traers and the veloities is OFLTC-NTL.dk. Sine the �ltering operates only in the viinity of the poles it would learlybe ineÆient to do the �ltering on the basis of the original oean row-by-row deom-position; most of the proessors would remain idle waiting for those near to the polesto omplete the �ltering. Thus the work is distributed over all the proessors (PEs),and the �ltered �elds returned to their original PEs afterwards.How the work is distributed is set up in routine DECMFLTR.dk. Here the rowsto be �ltered and their relative lengths are assessed in order to ensure that all PEswork equally hard at the �ltering. This deomposition is then put into ation byOFLTCNTL.dk from a all in TRACER.dk to deal with traers and veloities. Thestreamfuntion parameter ZTD is also �ltered, but via a diret all to OFILTER.dk3



from BLOKCALC.dk.The �ltering algorithms are given by equations (A3), (A10), and (A13). Eah ofthese depends on N the number of points to be �ltered, and p the number of modesto be kept. A table of oeÆients thus needs to be set up for the analyti result fromequation (B4), one oeÆient for eah grid point to be �ltered. In OFILTR.dk, thetable is stored in the array FTARR. The whole formalism is based on ombinationsof osines; these ombinations are setup at the outset and stored for referene in thearrays COSSAV and DENMSV. For a given (p;N), the numerator and denominatorto give FTARR are then built out of COSSAV and DENMSV, and stored in theelements COF and DENOM, respetively.The value of p depends on the latitude � of the row to be �ltered. At a givenreferene latitude �0, say, all modes are to be retained. Thereafter,p = N os�os�0 ; (8)i.e, as the poles are approahed fewer of the modes are kept.Time is expended in setting up FTARR. Thus OFLTCNTL.dk passes pairs (eitheru and v or T and S) for a given (p;N), so that on the �rst pass FTARR is set up, buton the seond pass it is not. This is determined by the parameter ISS in OFILTR.dk,with ISS = 0 to set up FTARR, and ISS > 0 to not do so.To unsramble how OFILTR.dk works, the following results are required based onAppendix B, starting with the basi result for the sum of a osine series, viz,QXk=P osk� = � [os(P � 1)�� osP�℄ + [os(Q+ 1)�� osQ�℄2(1� os�) ! : (9)Examination of the transforms in Appendix A shows that terms are required for whihthe oeÆient � = 0. In this limit the sum in equation (9) simply redues to,QXk=P 1 = Q� P + 1: (10)Now onsider the osine transform. The form detailed in Appendix A takes thesum from k = 1 to k = p. However this is inonsistent with the oding in OFILTR.dk.4



This is due to the mean term �f whih e�etively aounts for the term k = 0, so thatthe sum should be over k = 1 to k = p� 1. We therefore an write,g(xm) = �f + 2N NXj=1 f(xj) " �14 � "os(p+ 1)E � ospE4(1� osE) #!#j 6=m ��p� 12 ��j=m+ 2N NXj=1 f(xj) �14 � "os(p+ 1)F � ospF4(1� osF ) #! : (11)The fators involving the osines in the square brakets are stored in FTARR. It isalso arranged that the ontribution involving osE is zero when j = m by settingDENOM to zero for these elements. In its full glory, FTARR is a NXN matrix,so that the elements j = m lie on the matrix diagonal. In the ode all elements ofFTARR are �rst set, with the fator FXA = 1=2 to aount for the two fators of 1=4in equation (11). A separate loop then orrets all the diagonal elements by addingbak C1 = (p� 1)=2 + 1=4.The exerise an be repeated for the sine and full transforms. For the sine trans-form we an write,ff(xk) = 2(N + 1) NXi=1 f(xi) 14 + "os(p+ 1)F � ospF4(1� osF ) #!
+ 2(N + 1) NXi=1 f(xi) " �14 � "os(p+ 1)E � ospE4(1� osE) #!#i 6=k ��p2��i=k : (12)In this ase the orretion to the diagonal terms is now C1 = p=2 + 1=4. The fulltransform redues to,ff (xm) = a02 + 2N NXk=1 f(xk) " �12 � "os(p+ 1)E � ospE2(1� osE) #!#k 6=m [(p)℄k=m: (13)The diagonal orretion term is now C2 = p + 1=2. If the original signal is to bereovered from the full transform when p = N=2 for N even, an extra term is requiredin equation (13), as detailed by equation (A13).Having obtained FTARR, all that is left is to perform the sums on the right handsides of equations (11) to (13), and repeat this for eah grid point in the row being5



�ltered. This appears ultimately as a matrix multiply in the ode in the form,SPRIME(j) = NXi=1 FTARR(i;j)S(i); (14)for j from 1 to N . SPRIME thus represents the �ltered signal. There is one morehek, however, and that is to ensure that the �ltered signal does not have a di�erentmean value from the original signal. Note that the boundary ondition of zero ateither end of the row for the sine transform implies that the mean in the originalsignal annot be altered by the �ltering proess. The onverse is true for the osineand full transforms. Thus for the latter two, the ode initially subtrats o� the meanof the original signal (in variable STEMP = SSUM=N), obtains SPRIME and itssum SSM, and returns the �nal �ltered signal SFINAL via,SFINAL(j) = (SSUM � SSM)N + SPRIME(j): (15)3.1 Filtering a Vetor Field in the Oean CodeExamination of OFLTCNTL.dk will reveal that the �ltering of the veloity �eld (u; v)is atually performed on new variables UDIF and V DIF . The �ltered (u; v) isobtained from the �ltered values of UDIF and V DIF . On the surfae of a spherealong onstant latitude irles, the variation of the omponents does not quantify hownoisy the �eld is. It is neessary to hoose a artesian referene frame in whih toview the �eld. For example, a �eld with a onstant u (zonal) omponent and zero v(meridional) omponent would appear to be entirely smooth in spherial oordinates,but projeted onto a two-dimensional plane is atually relatively noisy.The artesian omponents used in the oean ode are shown in Figure 2. Thetop view is for the Northern hemisphere, the lower for the Southern hemisphere.Eah frame shows the relative diretions of the veloity �eld as viewed from aboveeah respetive pole. The meridional omponent v points to the North Pole, henev pointing away from the South Pole in the lower frame. The angle � here is thatreferred to in the oean ode through the variables SPCOS (os�) and SPSIN (sin�),6



with the onvention that � inreases in the diretion of u. The dashed lines in Figure 2are loal artesian axes on to whih the omponents an be projeted. The partiularhoies made by the oean ode are expliitly inluded.4 Tehnial Details : Speeding Up the FilteringAs highlighted previously, it was the development of the eddy-permitting version ofthe oean model that drew attention to the �ltering routines. The typial row lengthin HadCM3 is 288 grid points with 144 rows, whereas the eddy-permitting modelrequires 1080 grid points per row and 570 rows. This resolution inrease resulted inthe �ltering beoming almost half the total run time of the ode, with the total runtime itself being well in exess of that required to perform meaningful limate studies.The �ltering burden learly needed to be redued signi�antly.From the notes above, it is perhaps no surprise that the �ltering beame notieablyexpensive. The array FTARR omprises NXN elements, and therefore sales as N2,and not only has there been a near four-fold inrease in the row length, but thenumber of rows to be �ltered has also inreased. On top of the time element, therewas also an extra memory burden sine (as noted above) the �ltering routines arryaround FTARR, COSSAV, and DENMSV from timestep to timestep. The memoryused by these arrays added quite signi�antly to the eddy-permitting model's overallrequirement.Examination of FTARR and the formulae used to determine it (see equations (11),(12), and (13)) reveal a simple dependene on ombinations of osine terms. Theinherent symmetry of the osine terms an then be exploited to show that the arrayFTARR is symmetri about both diagonals. Thus, in priniple, it is not neessary toalulate all of the NXN elements as the referene version of OFILTR.dk does, butonly to do a quarter of the work, and �ll the remaining elements as required.Delving further in to the workings of OFILTR.dk, it transpires that the matrixmultiply in equation (14) takes up most of the time. This is evident from Table 1,7



Table 1: Single Timestep Relative TimingsSetion Control Half Quarter Half SSYMV Half SSPMVOFILTR 17.8 11.3 8.19 3.74 3.6(1) COS 1.38 0.635 0.314 0.632 0.583(1) SIN 1.26 0.552 0.275 0.54 0.501(1) FULL 2.54 1.06 0.538 1.08 1.03(1) TOTAL 5.18 2.25 1.13 2.25 2.11(2) SPRIME 11.1 8.98 5.68 1.34 1.16whih shows relative timings within OFILTR for a single timestep. The �rst olumnshows the original (Control) model timings within OFILTR itself, then for eah of theseparate deompositions within OFILTR to set up FTARR for COSine, SINe, andthe FULL transforms followed by their TOTAL. The bottom row SPRIME indiatesthe time taken to do the matrix multiply. SPRIME here aounts for over two-thirdsof OFILTR, with TOTAL aounting for the rest.Column `Half' gives the timings obtained by exploiting the symmetry about themain diagonal. Clearly TOTAL is down by a half, and some re-ordering withinSPRIME has redued the time there also. Column `Quarter' now exploits the sym-metry about both diagonals, halving TOTAL again, and having a further impat onSPRIME. Quarter has now halved the Control run time. It might be thought thatSPRIME should be going down linearly. However, to perform the matrix multiplyrequires judiious yling of arguments to pik out relevant terms from those stored.This introdues an overhead in alulating indies and then fething the variable fromthe array. There may well be room for more improvement here.Optimisation of suh an operation will depend, of ourse, on the mahine beingused. For the T3E parallel arhiteture used at the time of writing, there are spei�pakages designed to deal with linear algebra of the form implied by SPRIME, so-alled `BLAS' routines. One pakage alled SSYMV performs the matrix multiply8



Table 2: Five Day Oean Only TimingsSetion Control Half Quarter Half SSYMV Half SSPMVOFILTR TIME 137 76 55 38 36TOTAL TIME 668 568 550 540 527using an NXN matrix. There is not a pakage to deal with the double symmetry ofFTARR. However, there is a routine that exploits the symmetry about the leadingdiagonal, alled SSPMV. The `P' here refers to `Paked', in that only the upperdiagonal elements need be provided.In the experiments here it was found that �lling the matrix elements exploitingthe Quarter symmetry gave no gain over the Half symmetry when using the BLASroutines. This appears again due to the time overhead in transferring alulatedelements into their respetive slots. Thus the BLAS timings are only reorded as `HalfSSYMV' and `Half SSPMV'. It is evident that the main impat is on the SPRIMEoperation, with major speedups evident. The upshot is that our best ombinationHalf SSPMV has produed a �ve-fold derease in the OFILTR timings.To get a feel for the timings on a longer timesale, Table 2 shows results from�ve day oean only runs, with a forty level oean with 1:25X1:25 degrees horizontalspaing. The numbers now represent total CPU time. Again our best ombinationslead to a �ve-fold derease in the time spent �ltering, with some twenty per entsavings in the total run time. At present, these optimisations have greatly reduedthe omputational dependene of the eddy-permitting model on the �ltering.If the resolution of the oean model is to be further enhaned, then the relativelypoor salings assoiated with �ltering are likely to put OFILTR.dk bak in the spot-light. The present optimisations have been suÆient to keep the �ltering in hek(just). However, there remain fewer obvious ways to make it go faster. One possibilityis to store FTARR for most ombinations of (p;N); while this would ertainly givenearly a halving in time, the onsequent memory requirement would be enormous. It9



is lear that future models must do away with �ltering, not only from the run-timeaspet, but also to avoid the presumably none too insigni�ant impats of �lteringon the physial solution being sought.
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AppendixA Fourier Transform Formulae for the Oean ModelA.1 Fourier Cosine TransformOnly values at traer gridpoints are �ltered using a osine series, and therefore thevalues are at points xm = (m� 1=2)�x, where �x = �=N (there are N points to be�ltered).Figure 1 shows how this arises. The boundary onditions of �T=�x = 0 and u = 0are imposed at the veloity points adjaent to the �rst oean traer points along agiven row (here labelled U = 1 and U = 5). The transform is taken to be over theinterval inluding the boundary veloity points, thus the traer points are staggeredby half a grid point relative to the full grid veloity points. Clearly, the boundaryonditions determine the transform appliable to eah variable. In the example shownin Figure 1, there are 4 traer points to be �ltered, hene N = 4. If the veloity pointsare to be �ltered, then N = 3 instead.Let E = (m� j)�x and F = (m + j � 1)�x. The basi transform is de�ned by,ak = 2N NXj=1 f(xj)oskxj; ( A1 )and, g(xm) = 1N NXj=1 f(xj) + pXk=1 akoskxm; ( A2 )= �f + 2N pXk=1 oskxm NXj=1 f(xj)oskxj= �f + 2N NXj=1 f(xj) pXk=1 oskxmoskxj= �f + 2N NXj=1 f(xj) pXk=1(oskF + oskE2 );12



using the identity osaosb = 12(os(a+ b) + os(a� b)):The results from Appendix B are now used to give analyti results for the osineterms summed over the index k. A further simpli�ation is obtained by splitting thesum over the index j in oskE as,2N (m�1Xj=1 + NXj=m+1+ Xj=m) pXk=1 f(xj)oskE2 :When j = m, E = 0 so that the sum over index k simply gives pf(xm)=2. Puttingall this together we an (�nally) write,g(xm) = �f + pN f(xm)+ 2N [m�1Xj=1 + NXj=m+1℄f(xj) �14 � os(p+ 1)E � ospE4(1� osE) !+ 2N NXj=1 f(xj) �14 � os(p+ 1)F � ospF4(1� osF ) ! ; ( A3 )i.e., g(xm) = �f + pN f(xm)� 2N [m�1Xj=1 + NXj=m+1℄f(xj) 14 + os(p+ 1)E � ospE4(1� osE) !
� 2N NXj=1 f(xj) 14 + os(p+ 1)F � ospF4(1� osF ) ! :These formulae an be heked by setting p = N , i.e, retain all the Fourier omponentsso that the original signal should be reovered. Using,os(N + 1)j�x� osNj�x = osj�(osj�x� 1)for integer j gives,g(xm) = �f + f(xm)� 12N NXj=1 f(xj)(1� (�1)m�j)� 12N NXj=1 f(xj)(1� (�1)m+j�1):13



Rearranging the sums results in,g(xm) = f(xm) + �f � 1N NXj=1 f(xj) + 12N NXj=1 f(xj)(�1)m[(�1)�j � (�1)j℄:Realling the de�nition of �f it is then lear that we simply reover the desired result,viz g(xm) = f(xm). Thus the basi equations (A1) and (A3) do indeed represent theFourier osine transform.A.2 Fourier Sine TransformOnly values at veloity gridpoints are �ltered using a sine series, and the values areat points xk = k�x, k = 1 to k = N , where �x = �=(N+1). Figure 1 shows how theounting arises on the veloity grid points (realling the boundary onditions u = 0at land points).Here de�ne E = (i� k)�x, F = (i+ k)�x.The disrete sine transform is (e.g. Dahlquist and Bjork, 1974),bj = 2(N + 1) NXi=1 f(xi)sinij�x; ( A4 )f(xk) = NXj=1 bjsinjk�x: ( A5 )The �ltered values are given by,ff (xk) = pXj=1 bjsinjk�x: ( A6 )Thus ff(xk) = 2(N + 1) NXi=1 f(xi) pXj=1 sinjk�xsinij�x: ( A7 )Now sinij�xsinjk�x = 12[osEj � osFj℄; ( A8 )so that ff (xk) = 1(N + 1) NXi=1 f(xi) pXj=1[osEj � osFj℄: ( A9 )14



Using the results of Appendix B,ff(xk) = 2(N + 1)[k�1Xi=1 + NXi=k+1℄f(xi) os(p+ 1)F � ospF4(1� osF ) � os(p+ 1)E � ospE4(1� osE) !
+ 2(N + 1)f(xk) p2 + 14 + os(p+ 1)2k�x� osp2k�x4(1� os2k�x) ! : ( A10 )This is the form used in the standard model ode.As before, these formulae an be heked by setting p = N in order to reover theoriginal signal. The key here is to use the result,os ((N + 1)M�=(N + 1))� os (NM�=(N + 1))(1� os (M�=(N + 1))) = osM�;where M is an integer representing either (i + k), (i� k), or 2k in equation A10.A.3 Full Fourier TransformThis applies when there are no land points in the row to be �ltered. The row onsistsof N independent points, suh that �x = 2�=N and xm = (m � 1)�x with theperiodi ondition xN+1 = x1. For this transform we de�ne E = (m� k)�x.There is an asymmetry in the transform, dependent on whether N is even or odd.From the de�nitions,f(xm) = a02 + N2 �1Xj=1 ajosj(m� 1)�x+ N2Xj=1 bjsinj(m� 1)�x N even;f(xm) = a02 + N�12Xj=1 (ajosj(m� 1)�x + bjsinj(m� 1)�x) N odd;it is lear that when N is even, the osine sum ontains one less term than the sinesum. This has onsequenes later when attempting to reover the original signal.The formula for the trunated disrete Fourier transform of these N points is,ff (xm) = a02 + pXj=1(ajosj(m� 1)�x + bjsinj(m� 1)�x); ( A11 )15



where, aj = 2N NXk=1 f(xk)osj(k � 1)�x;bj = 2N NXk=1 f(xk)sinj(k � 1)�x:Thus, ff(xm) = a02 + 2N NXk=1 f(xk) pXj=1 osj(m� 1)�xosj(k � 1)�x+ 2N NXk=1 f(xk) pXj=1 sinj(m� 1)�xsinj(k � 1)�x;ff(xm) = a02 + 2N NXk=1 f(xk)2 pXj=1 os(m + k � 2)j�x + osjE+ 2N NXk=1 f(xk)2 pXj=1 osjE � os(m + k � 2)j�x;i.e., ff (xm) = a02 + 2pN f(xm) + 2N [m�1Xk=1 + NXk=m+1℄f(xk) pXj=1 osjE: ( A12 )Equation (A12) is exat if the number of osine and sine terms in the trunatedseries is the same. If N is odd there are equal numbers of osine and sine terms (seeabove), and the original signal an be reovered by setting p = (N � 1)=2, and usingPNk=1 f(xk) = 0 sine the mean is aounted for by a0. However, if N is even andp = N=2 is used, it is lear that an extraneous osine ontribution has been inluded;in this instane, then, an extra term must be inluded in equation (A12) in order toensure reovery of the original signal. The ode hooses to subtrat,2N 12 NXk=1 f(xk)os(k � 1)p�xos(m� 1)p�x = 2N [12 NXk=1 f(xk)(�1)m(�1)k℄(thus giving ff (xm) = f(xm)), i.e.,ff(xm) = a02 + 2pN f(xm)� 2N [m�1Xk=1 + NXk=m+1℄f(xk) 12 + os(p+ 1)E � ospE2(1� osE) !16



�Æp;N=2 2N NXk=1 f(xk)2 (�1)k+m: ( A13 )This extra term is onstruted in OFILTR.dk from the variable COSNPI. However,COSNPI is inorretly oded with,COSNPI(IM) = os(IM �=2);and should simply be, COSNPI(IM) = os(IM �):Again, sine PNk=1 f(xk) = 0, the formulae indeed return the original values.B Sum of a Cosine SeriesOFILTER.dk depends on the following result for the sum S. All transforms havebeen redued to suh sums over osines so that this analyti result an be used.Consider the series, S = QXj=P josj�; ( B1 )for real � and  (� 6= 0). Then,S = QXj=P j<[expij�℄= <0� QXj=P j[expij�℄1A ; ( B2 )so that, S = < Q+1expi(Q + 1)�� P expiP�expi�� 1 ! ( B3 )using the formula for the sum of a geometri series. Thus,S = < Q+1[os(Q + 1)�+ isin(Q + 1)�℄� P [osP� + isinP�℄[os�� 1℄ + isin� ! ;17



so that, S = Q+1[os(Q+ 1)�(os�� 1) + sin(Q + 1)�sin�℄(os�� 1)2 + 2sin2��P [osP�(os�� 1) + sinP�sin�℄(os�� 1)2 + 2sin2� ;S = Q+1[osQ�� os(Q+ 1)�℄� P [os(P � 1)�� osP�℄1 + 2 � 2os� ;giving the �nal result in the form,S = � Q+1[os(Q+ 1)�� osQ�℄ + P [os(P � 1)�� osP�℄1 + 2 � 2os� ! : ( B4 )For most purposes of interest  = 1, the lower limit P = 1 and the upper limitQ = p, where p represents the number of modes to be kept. For these limits the sumbeomes, S = �12 �  [os(p+ 1)�� osp�℄2(1� os�) ! : ( B5 )C Fourier DampingThe struture of the oean model plaes a strong onstraint on the omputationaleÆieny of a Fast Fourier Transform, making it uneonomi to implement Fourierdamping in its full form. This setion desribes a ompromise tehnique whih willmaintain stability with less severe e�ets than Fourier hopping, and whih maybe implemented in the oean model with only a small inrease in the alulationsat eah timestep. It represents, however, a more stringent onstraint than the fullimplementation of Fourier damping.The �ltered �eld is now taken to be,ff(k�x) = pXj=1bjsin(jk�x) + NXj=p+1�jbjsin(jk�x); ( C1 )where � and  are to be determined. It is readily seen that this is an extension of thehopping tehnique. The shortest wave fully retained is still given by equation (7),shorter waves being damped, sine �j < 1 is imposed.18



In order to determine the values of � and , the growth rates of the unstable wavesmust be determined. This is done by onsidering the numerial stability problem asin Annex C of F1. Let the growth rate of a wave of the form sin(jk�x) be Ak. Then,for stability to be assured,�k � 1Ak for p < k � N: ( C2 )Clearly, with only the values � and  available to �t these onstraints some form ofoptimal values must be hosen. One method is suggested here. De�ne,dk = 1Ak and D = fdk : p < k � Ng; ( C3 )� = max(D): ( C4 )Then set,  = min(1=(�Ak)1=k) : p < k � N: ( C5 )This hoie of � and  will preserve the property �k � 1=Ak (exept for trunationerrors) while maintaining a larger value of  than if � = 1. Note that in most ases� = 1=Ap+1 sine waves beome more unstable as their wavelength dereases.While equation (C1) will maintain stability there will still be a marked redutionin the amplitude of the �rst damped waves. This may indue spurious omputationalmodes, although these should be less important than in the ase of Fourier hoppingdue to the retention of shorter waves, albeit at redued amplitude, and to the abseneof the abrupt hanges in trunation with latitude. In pratie it would be prudent touse (1� �)�k ( C6 )as the damping fator for sin(k�x) for some small �, whih may be ahieved byrede�ning �, in order to allow for e�ets not onsidered in the linear stability analysis.The appropriate formulae to use may be derived from those of Appendix A, andare given below for ompleteness.Cosine Transform19



Here, xk = (k � 1=2)�x, E = (k � j)�x, and F = (k + j � 1)�x.ff(xk) = �f + pN f(xk)�2N [k�1Xj=1+ NXj=k+1℄f(xj)[14 + os(p+ 1)E � ospE4(1� osE) ℄� 2N NXj=1 f(xj)[14 + os(p+ 1)F � ospF4(1� osF ) ℄+ N+1 � p+1N( � 1) !�f(xk)+2�N [k�1Xj=1+ NXj=k+1℄[f(xj) p+1(ospE � os(p+ 1)E) + N+1(os(N + 1)E � osNE)4(1� 2osE + 2) !℄+2�N NXj=1 f(xj) p+1(ospF � os(p+ 1)F ) + N+1(os(N + 1)F � osNF )4(1� 2osF + 2) !( C7 )Sine TransformHere, xk = k�x, E = (j � k)�x, and F = (j + k)�x.ff (xk) = 2N + 1[k�1Xj=1+ NXj=k+1℄f(xj) os(p+ 1)F � ospF4(1� osF ) � os(p+ 1)E � ospE4(1� osE) !
+ 2N + 1f(xk) 14 + p2 + os2(p+ 1)xk � os2pxk4(1� os2xk) !+ 2�N + 1[k�1Xj=1+ NXj=k+1℄ p+1(ospF � os(p+ 1)F ) + N+1(os(N + 1)F � osNF )4(1 + 2 � 2osF ) !� 2�N + 1[k�1Xj=1+ NXj=k+1℄ p+1(ospE � os(p+ 1)E) + N+1(os(N + 1)E � osNE)4(1 + 2 � 2osE) !+ N+1 � p+1 � 1 ! f(xk)2 + p+1(os2pxk � os2(p+ 1)xk) + N+1(1� os2xk)4(1 + 2 � 2os2xk) ( C8 )20



Full SeriesHere, xk = (k�1)�x, E = (m�k)�x, and �f the mean signal is taken to be zero.ff(xm) = � 2N [m�1Xk=1 + NXk=m+1℄f(xk)[12 + os(p+ 1)E � ospE2(1� osE) ℄ + 2pN f(xm)�2�N [m�1Xk=1 + NXk=m+1℄f(xk)[p+1(ospE � os(p+ 1)E)(1 + 2 � 2osE) ℄ + 2�N f(xm) Q+1 � p+1( � 1) !�2�N [m�1Xk=1 + NXk=m+1℄f(xk)[Q+1(os(Q+ 1)E � osQE)(1 + 2 � 2osE) ℄�2ÆQ;N=2N �Q NXk=1 f(xk)(�1)m+k; ( C9 )where Q = N=2 or Q = (N � 1)=2 for N even or odd, respetively, and Æa;b is zero orone if a 6= b or a = b, respetively.
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Figure 2: Cartesian omponents of veloity �eld for �ltering along onstant latitudeirles. 22


