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1 INTRODUCTIONFinite di�eren
e models on a regular latitude-longitude grid have de
reasing zonal gri-dlength as the poles are approa
hed. This imposes severe 
onstraints on the timestepof an expli
it integration s
heme if the integration is to remain stable. For example,the Courant-Friedri
hs-Lewy (CFL) 
ondition for adve
tion requires,�t < �x
 ; (1)where �t is the timestep, �x is the gridlength, and \
" the adve
ting velo
ity. Inorder to prevent the stability 
riteria near the poles dominating the numeri
al pro
e-dures it is usual to impose some form of �ltering of the model �elds, thus redu
ingthe e�e
tive gridlength.One �ltering te
hnique is known as Fourier 
hopping (Williamson, 1976) in whi
hthe �elds to be smoothed are Fourier analysed and waves shorter than the minimumstable gridlength dis
arded. This s
heme has been used in numeri
al weather predi
-tion (NWP) models, but was found to introdu
e roughnesses in the model �elds ata wavelength near to the minimum retained (Bell, 1984). A s
heme was introdu
edwhi
h sele
tively damped (rather than trun
ated) the unstable wavelengths, so-
alledFourier damping. This was found to produ
e smoother �elds (Di
kinson, 1985), andis used in the present operational NWP model at the Met. OÆ
e (Cullen et al 1993).The o
ean model (Cox, 1984) has always used Fourier 
hopping, and the aim ofthis paper is to des
ribe the way in whi
h this has been implemented. A method akinto the Fourier damping of the NWP models is also detailed for 
ompleteness, eventhough it has never been used. In NWP models Fast Fourier Transforms (FFTs), forwhi
h many eÆ
ient algorithms exist (e.g. Temperton 1983), are used. The eÆ
ien
yof the FFT algorithms, espe
ially on ve
tor 
omputers, relies on pro
essing arraysof identi
al length. Latitude-longitude models of the atmosphere use the te
hniqueto �lter around parallels of longitude, whi
h are the same length at all latitudes andheights. O
ean models, though, �lter within o
ean basins, so the number of points inthe �lter varies with geographi
al position. The Cox (1984) model uses an algebrai
1



transform for this �ltering, the details of whi
h are in
luded in this paper.This do
umentation represents an updated version of an O
ean Appli
ations in-ternal paper by Foreman (1995) (hereafter referred to as F1) to take a

ount ofdevelopments related to the �ltering arising from the move to parallel ar
hite
tureafter F1 appeared. Furthermore, the advent of the eddy-permitting o
ean model us-ing a resolution of 1/3X1/3 degrees brought the time spent in the �ltering routinesto prominen
e. Indeed, the original form of the �ltering a

ounted for up to �fty per
ent of the total run time. This 
ontrasts strongly with the present o
ean 
ompo-nent of HadCM3 whi
h has a resolution of 1.25X1.25 degrees, where the time spent�ltering is not signi�
ant.2 Fourier ChoppingNumeri
al stability of the o
ean model is ensured by removing all numeri
ally unstables
ales of motion from the model �elds. This is done using the method of Fourier
hopping. As in F1, the te
hnique is des
ribed using the one-dimensional adve
tionequation, �a�t = 
�a�x: (2)In �nite di�eren
e form (leap-frog, 
entred di�eren
es) this be
omes,an+1j � an�1j = 
�t�x (anj+1 � anj�1): (3)Consider the solution anj to be of the form,anj = �nj exp(i(jk�x)): (4)Equation (3) then be
omes �2 � 1 = 2i�rsin(k�x); (5)where r = (
�t)=�x, i.e.,� = irsin(k�x)�q(1� r2sin2(k�x)): (6)2



Thus, if jrj � 1, j�j = 1, and the wave does not grow. More generally the requirementis that jrsin(k�x)j � 1 (7)for a wave to be stable. Fourier 
hopping imposes this 
ondition by removing all wave
omponents for whi
h this relationship does not hold.The standard te
hnique used to implement Fourier 
hopping is (for all latitudeswhere jrj > 1 for some waves) to determine the wave 
omponents using a dis
reteFourier transform, dis
ard all unstable waves, and re-
ombine the remaining waves toform the �ltered �eld. This is implemented in the o
ean model using a te
hnique whi
hrelies on the series involved being summed analyti
ally, as des
ribed in Appendix B.3 Te
hni
al Details : O
ean Filtering SubroutinesAt the time of writing, the �ltering in the o
ean 
ode remains of the 
hopping ratherthan damping variety. The move to parallel ar
hite
ture has also meant some re-organisation of the 
ode in order to �lter in an eÆ
ient (\load-balan
ed") way. Thereare some new routines des
ribed below to do this. However, at the heart of the�ltering rests OFILTR.dk, whi
h as far as 
an be told is in its original form.The routine organising the �ltering of the tra
ers and the velo
ities is OFLTC-NTL.dk. Sin
e the �ltering operates only in the vi
inity of the poles it would 
learlybe ineÆ
ient to do the �ltering on the basis of the original o
ean row-by-row de
om-position; most of the pro
essors would remain idle waiting for those near to the polesto 
omplete the �ltering. Thus the work is distributed over all the pro
essors (PEs),and the �ltered �elds returned to their original PEs afterwards.How the work is distributed is set up in routine DECMFLTR.dk. Here the rowsto be �ltered and their relative lengths are assessed in order to ensure that all PEswork equally hard at the �ltering. This de
omposition is then put into a
tion byOFLTCNTL.dk from a 
all in TRACER.dk to deal with tra
ers and velo
ities. Thestreamfun
tion parameter ZTD is also �ltered, but via a dire
t 
all to OFILTER.dk3



from BLOKCALC.dk.The �ltering algorithms are given by equations (A3), (A10), and (A13). Ea
h ofthese depends on N the number of points to be �ltered, and p the number of modesto be kept. A table of 
oeÆ
ients thus needs to be set up for the analyti
 result fromequation (B4), one 
oeÆ
ient for ea
h grid point to be �ltered. In OFILTR.dk, thetable is stored in the array FTARR. The whole formalism is based on 
ombinationsof 
osines; these 
ombinations are setup at the outset and stored for referen
e in thearrays COSSAV and DENMSV. For a given (p;N), the numerator and denominatorto give FTARR are then built out of COSSAV and DENMSV, and stored in theelements COF and DENOM, respe
tively.The value of p depends on the latitude � of the row to be �ltered. At a givenreferen
e latitude �0, say, all modes are to be retained. Thereafter,p = N 
os�
os�0 ; (8)i.e, as the poles are approa
hed fewer of the modes are kept.Time is expended in setting up FTARR. Thus OFLTCNTL.dk passes pairs (eitheru and v or T and S) for a given (p;N), so that on the �rst pass FTARR is set up, buton the se
ond pass it is not. This is determined by the parameter ISS in OFILTR.dk,with ISS = 0 to set up FTARR, and ISS > 0 to not do so.To uns
ramble how OFILTR.dk works, the following results are required based onAppendix B, starting with the basi
 result for the sum of a 
osine series, viz,QXk=P 
osk� = � [
os(P � 1)�� 
osP�℄ + [
os(Q+ 1)�� 
osQ�℄2(1� 
os�) ! : (9)Examination of the transforms in Appendix A shows that terms are required for whi
hthe 
oeÆ
ient � = 0. In this limit the sum in equation (9) simply redu
es to,QXk=P 1 = Q� P + 1: (10)Now 
onsider the 
osine transform. The form detailed in Appendix A takes thesum from k = 1 to k = p. However this is in
onsistent with the 
oding in OFILTR.dk.4



This is due to the mean term �f whi
h e�e
tively a

ounts for the term k = 0, so thatthe sum should be over k = 1 to k = p� 1. We therefore 
an write,g(xm) = �f + 2N NXj=1 f(xj) " �14 � "
os(p+ 1)E � 
ospE4(1� 
osE) #!#j 6=m ��p� 12 ��j=m+ 2N NXj=1 f(xj) �14 � "
os(p+ 1)F � 
ospF4(1� 
osF ) #! : (11)The fa
tors involving the 
osines in the square bra
kets are stored in FTARR. It isalso arranged that the 
ontribution involving 
osE is zero when j = m by settingDENOM to zero for these elements. In its full glory, FTARR is a NXN matrix,so that the elements j = m lie on the matrix diagonal. In the 
ode all elements ofFTARR are �rst set, with the fa
tor FXA = 1=2 to a

ount for the two fa
tors of 1=4in equation (11). A separate loop then 
orre
ts all the diagonal elements by addingba
k C1 = (p� 1)=2 + 1=4.The exer
ise 
an be repeated for the sine and full transforms. For the sine trans-form we 
an write,ff(xk) = 2(N + 1) NXi=1 f(xi) 14 + "
os(p+ 1)F � 
ospF4(1� 
osF ) #!
+ 2(N + 1) NXi=1 f(xi) " �14 � "
os(p+ 1)E � 
ospE4(1� 
osE) #!#i 6=k ��p2��i=k : (12)In this 
ase the 
orre
tion to the diagonal terms is now C1 = p=2 + 1=4. The fulltransform redu
es to,ff (xm) = a02 + 2N NXk=1 f(xk) " �12 � "
os(p+ 1)E � 
ospE2(1� 
osE) #!#k 6=m [(p)℄k=m: (13)The diagonal 
orre
tion term is now C2 = p + 1=2. If the original signal is to bere
overed from the full transform when p = N=2 for N even, an extra term is requiredin equation (13), as detailed by equation (A13).Having obtained FTARR, all that is left is to perform the sums on the right handsides of equations (11) to (13), and repeat this for ea
h grid point in the row being5



�ltered. This appears ultimately as a matrix multiply in the 
ode in the form,SPRIME(j) = NXi=1 FTARR(i;j)S(i); (14)for j from 1 to N . SPRIME thus represents the �ltered signal. There is one more
he
k, however, and that is to ensure that the �ltered signal does not have a di�erentmean value from the original signal. Note that the boundary 
ondition of zero ateither end of the row for the sine transform implies that the mean in the originalsignal 
annot be altered by the �ltering pro
ess. The 
onverse is true for the 
osineand full transforms. Thus for the latter two, the 
ode initially subtra
ts o� the meanof the original signal (in variable STEMP = SSUM=N), obtains SPRIME and itssum SSM, and returns the �nal �ltered signal SFINAL via,SFINAL(j) = (SSUM � SSM)N + SPRIME(j): (15)3.1 Filtering a Ve
tor Field in the O
ean CodeExamination of OFLTCNTL.dk will reveal that the �ltering of the velo
ity �eld (u; v)is a
tually performed on new variables UDIF and V DIF . The �ltered (u; v) isobtained from the �ltered values of UDIF and V DIF . On the surfa
e of a spherealong 
onstant latitude 
ir
les, the variation of the 
omponents does not quantify hownoisy the �eld is. It is ne
essary to 
hoose a 
artesian referen
e frame in whi
h toview the �eld. For example, a �eld with a 
onstant u (zonal) 
omponent and zero v(meridional) 
omponent would appear to be entirely smooth in spheri
al 
oordinates,but proje
ted onto a two-dimensional plane is a
tually relatively noisy.The 
artesian 
omponents used in the o
ean 
ode are shown in Figure 2. Thetop view is for the Northern hemisphere, the lower for the Southern hemisphere.Ea
h frame shows the relative dire
tions of the velo
ity �eld as viewed from aboveea
h respe
tive pole. The meridional 
omponent v points to the North Pole, hen
ev pointing away from the South Pole in the lower frame. The angle � here is thatreferred to in the o
ean 
ode through the variables SPCOS (
os�) and SPSIN (sin�),6



with the 
onvention that � in
reases in the dire
tion of u. The dashed lines in Figure 2are lo
al 
artesian axes on to whi
h the 
omponents 
an be proje
ted. The parti
ular
hoi
es made by the o
ean 
ode are expli
itly in
luded.4 Te
hni
al Details : Speeding Up the FilteringAs highlighted previously, it was the development of the eddy-permitting version ofthe o
ean model that drew attention to the �ltering routines. The typi
al row lengthin HadCM3 is 288 grid points with 144 rows, whereas the eddy-permitting modelrequires 1080 grid points per row and 570 rows. This resolution in
rease resulted inthe �ltering be
oming almost half the total run time of the 
ode, with the total runtime itself being well in ex
ess of that required to perform meaningful 
limate studies.The �ltering burden 
learly needed to be redu
ed signi�
antly.From the notes above, it is perhaps no surprise that the �ltering be
ame noti
eablyexpensive. The array FTARR 
omprises NXN elements, and therefore s
ales as N2,and not only has there been a near four-fold in
rease in the row length, but thenumber of rows to be �ltered has also in
reased. On top of the time element, therewas also an extra memory burden sin
e (as noted above) the �ltering routines 
arryaround FTARR, COSSAV, and DENMSV from timestep to timestep. The memoryused by these arrays added quite signi�
antly to the eddy-permitting model's overallrequirement.Examination of FTARR and the formulae used to determine it (see equations (11),(12), and (13)) reveal a simple dependen
e on 
ombinations of 
osine terms. Theinherent symmetry of the 
osine terms 
an then be exploited to show that the arrayFTARR is symmetri
 about both diagonals. Thus, in prin
iple, it is not ne
essary to
al
ulate all of the NXN elements as the referen
e version of OFILTR.dk does, butonly to do a quarter of the work, and �ll the remaining elements as required.Delving further in to the workings of OFILTR.dk, it transpires that the matrixmultiply in equation (14) takes up most of the time. This is evident from Table 1,7



Table 1: Single Timestep Relative TimingsSe
tion Control Half Quarter Half SSYMV Half SSPMVOFILTR 17.8 11.3 8.19 3.74 3.6(1) COS 1.38 0.635 0.314 0.632 0.583(1) SIN 1.26 0.552 0.275 0.54 0.501(1) FULL 2.54 1.06 0.538 1.08 1.03(1) TOTAL 5.18 2.25 1.13 2.25 2.11(2) SPRIME 11.1 8.98 5.68 1.34 1.16whi
h shows relative timings within OFILTR for a single timestep. The �rst 
olumnshows the original (Control) model timings within OFILTR itself, then for ea
h of theseparate de
ompositions within OFILTR to set up FTARR for COSine, SINe, andthe FULL transforms followed by their TOTAL. The bottom row SPRIME indi
atesthe time taken to do the matrix multiply. SPRIME here a

ounts for over two-thirdsof OFILTR, with TOTAL a

ounting for the rest.Column `Half' gives the timings obtained by exploiting the symmetry about themain diagonal. Clearly TOTAL is down by a half, and some re-ordering withinSPRIME has redu
ed the time there also. Column `Quarter' now exploits the sym-metry about both diagonals, halving TOTAL again, and having a further impa
t onSPRIME. Quarter has now halved the Control run time. It might be thought thatSPRIME should be going down linearly. However, to perform the matrix multiplyrequires judi
ious 
y
ling of arguments to pi
k out relevant terms from those stored.This introdu
es an overhead in 
al
ulating indi
es and then fet
hing the variable fromthe array. There may well be room for more improvement here.Optimisation of su
h an operation will depend, of 
ourse, on the ma
hine beingused. For the T3E parallel ar
hite
ture used at the time of writing, there are spe
i�
pa
kages designed to deal with linear algebra of the form implied by SPRIME, so-
alled `BLAS' routines. One pa
kage 
alled SSYMV performs the matrix multiply8



Table 2: Five Day O
ean Only TimingsSe
tion Control Half Quarter Half SSYMV Half SSPMVOFILTR TIME 137 76 55 38 36TOTAL TIME 668 568 550 540 527using an NXN matrix. There is not a pa
kage to deal with the double symmetry ofFTARR. However, there is a routine that exploits the symmetry about the leadingdiagonal, 
alled SSPMV. The `P' here refers to `Pa
ked', in that only the upperdiagonal elements need be provided.In the experiments here it was found that �lling the matrix elements exploitingthe Quarter symmetry gave no gain over the Half symmetry when using the BLASroutines. This appears again due to the time overhead in transferring 
al
ulatedelements into their respe
tive slots. Thus the BLAS timings are only re
orded as `HalfSSYMV' and `Half SSPMV'. It is evident that the main impa
t is on the SPRIMEoperation, with major speedups evident. The upshot is that our best 
ombinationHalf SSPMV has produ
ed a �ve-fold de
rease in the OFILTR timings.To get a feel for the timings on a longer times
ale, Table 2 shows results from�ve day o
ean only runs, with a forty level o
ean with 1:25X1:25 degrees horizontalspa
ing. The numbers now represent total CPU time. Again our best 
ombinationslead to a �ve-fold de
rease in the time spent �ltering, with some twenty per 
entsavings in the total run time. At present, these optimisations have greatly redu
edthe 
omputational dependen
e of the eddy-permitting model on the �ltering.If the resolution of the o
ean model is to be further enhan
ed, then the relativelypoor s
alings asso
iated with �ltering are likely to put OFILTR.dk ba
k in the spot-light. The present optimisations have been suÆ
ient to keep the �ltering in 
he
k(just). However, there remain fewer obvious ways to make it go faster. One possibilityis to store FTARR for most 
ombinations of (p;N); while this would 
ertainly givenearly a halving in time, the 
onsequent memory requirement would be enormous. It9



is 
lear that future models must do away with �ltering, not only from the run-timeaspe
t, but also to avoid the presumably none too insigni�
ant impa
ts of �lteringon the physi
al solution being sought.

10
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AppendixA Fourier Transform Formulae for the O
ean ModelA.1 Fourier Cosine TransformOnly values at tra
er gridpoints are �ltered using a 
osine series, and therefore thevalues are at points xm = (m� 1=2)�x, where �x = �=N (there are N points to be�ltered).Figure 1 shows how this arises. The boundary 
onditions of �T=�x = 0 and u = 0are imposed at the velo
ity points adja
ent to the �rst o
ean tra
er points along agiven row (here labelled U = 1 and U = 5). The transform is taken to be over theinterval in
luding the boundary velo
ity points, thus the tra
er points are staggeredby half a grid point relative to the full grid velo
ity points. Clearly, the boundary
onditions determine the transform appli
able to ea
h variable. In the example shownin Figure 1, there are 4 tra
er points to be �ltered, hen
e N = 4. If the velo
ity pointsare to be �ltered, then N = 3 instead.Let E = (m� j)�x and F = (m + j � 1)�x. The basi
 transform is de�ned by,ak = 2N NXj=1 f(xj)
oskxj; ( A1 )and, g(xm) = 1N NXj=1 f(xj) + pXk=1 ak
oskxm; ( A2 )= �f + 2N pXk=1 
oskxm NXj=1 f(xj)
oskxj= �f + 2N NXj=1 f(xj) pXk=1 
oskxm
oskxj= �f + 2N NXj=1 f(xj) pXk=1(
oskF + 
oskE2 );12



using the identity 
osa
osb = 12(
os(a+ b) + 
os(a� b)):The results from Appendix B are now used to give analyti
 results for the 
osineterms summed over the index k. A further simpli�
ation is obtained by splitting thesum over the index j in 
oskE as,2N (m�1Xj=1 + NXj=m+1+ Xj=m) pXk=1 f(xj)
oskE2 :When j = m, E = 0 so that the sum over index k simply gives pf(xm)=2. Puttingall this together we 
an (�nally) write,g(xm) = �f + pN f(xm)+ 2N [m�1Xj=1 + NXj=m+1℄f(xj) �14 � 
os(p+ 1)E � 
ospE4(1� 
osE) !+ 2N NXj=1 f(xj) �14 � 
os(p+ 1)F � 
ospF4(1� 
osF ) ! ; ( A3 )i.e., g(xm) = �f + pN f(xm)� 2N [m�1Xj=1 + NXj=m+1℄f(xj) 14 + 
os(p+ 1)E � 
ospE4(1� 
osE) !
� 2N NXj=1 f(xj) 14 + 
os(p+ 1)F � 
ospF4(1� 
osF ) ! :These formulae 
an be 
he
ked by setting p = N , i.e, retain all the Fourier 
omponentsso that the original signal should be re
overed. Using,
os(N + 1)j�x� 
osNj�x = 
osj�(
osj�x� 1)for integer j gives,g(xm) = �f + f(xm)� 12N NXj=1 f(xj)(1� (�1)m�j)� 12N NXj=1 f(xj)(1� (�1)m+j�1):13



Rearranging the sums results in,g(xm) = f(xm) + �f � 1N NXj=1 f(xj) + 12N NXj=1 f(xj)(�1)m[(�1)�j � (�1)j℄:Re
alling the de�nition of �f it is then 
lear that we simply re
over the desired result,viz g(xm) = f(xm). Thus the basi
 equations (A1) and (A3) do indeed represent theFourier 
osine transform.A.2 Fourier Sine TransformOnly values at velo
ity gridpoints are �ltered using a sine series, and the values areat points xk = k�x, k = 1 to k = N , where �x = �=(N+1). Figure 1 shows how the
ounting arises on the velo
ity grid points (re
alling the boundary 
onditions u = 0at land points).Here de�ne E = (i� k)�x, F = (i+ k)�x.The dis
rete sine transform is (e.g. Dahlquist and Bjor
k, 1974),bj = 2(N + 1) NXi=1 f(xi)sinij�x; ( A4 )f(xk) = NXj=1 bjsinjk�x: ( A5 )The �ltered values are given by,ff (xk) = pXj=1 bjsinjk�x: ( A6 )Thus ff(xk) = 2(N + 1) NXi=1 f(xi) pXj=1 sinjk�xsinij�x: ( A7 )Now sinij�xsinjk�x = 12[
osEj � 
osFj℄; ( A8 )so that ff (xk) = 1(N + 1) NXi=1 f(xi) pXj=1[
osEj � 
osFj℄: ( A9 )14



Using the results of Appendix B,ff(xk) = 2(N + 1)[k�1Xi=1 + NXi=k+1℄f(xi) 
os(p+ 1)F � 
ospF4(1� 
osF ) � 
os(p+ 1)E � 
ospE4(1� 
osE) !
+ 2(N + 1)f(xk) p2 + 14 + 
os(p+ 1)2k�x� 
osp2k�x4(1� 
os2k�x) ! : ( A10 )This is the form used in the standard model 
ode.As before, these formulae 
an be 
he
ked by setting p = N in order to re
over theoriginal signal. The key here is to use the result,
os ((N + 1)M�=(N + 1))� 
os (NM�=(N + 1))(1� 
os (M�=(N + 1))) = 
osM�;where M is an integer representing either (i + k), (i� k), or 2k in equation A10.A.3 Full Fourier TransformThis applies when there are no land points in the row to be �ltered. The row 
onsistsof N independent points, su
h that �x = 2�=N and xm = (m � 1)�x with theperiodi
 
ondition xN+1 = x1. For this transform we de�ne E = (m� k)�x.There is an asymmetry in the transform, dependent on whether N is even or odd.From the de�nitions,f(xm) = a02 + N2 �1Xj=1 aj
osj(m� 1)�x+ N2Xj=1 bjsinj(m� 1)�x N even;f(xm) = a02 + N�12Xj=1 (aj
osj(m� 1)�x + bjsinj(m� 1)�x) N odd;it is 
lear that when N is even, the 
osine sum 
ontains one less term than the sinesum. This has 
onsequen
es later when attempting to re
over the original signal.The formula for the trun
ated dis
rete Fourier transform of these N points is,ff (xm) = a02 + pXj=1(aj
osj(m� 1)�x + bjsinj(m� 1)�x); ( A11 )15



where, aj = 2N NXk=1 f(xk)
osj(k � 1)�x;bj = 2N NXk=1 f(xk)sinj(k � 1)�x:Thus, ff(xm) = a02 + 2N NXk=1 f(xk) pXj=1 
osj(m� 1)�x
osj(k � 1)�x+ 2N NXk=1 f(xk) pXj=1 sinj(m� 1)�xsinj(k � 1)�x;ff(xm) = a02 + 2N NXk=1 f(xk)2 pXj=1 
os(m + k � 2)j�x + 
osjE+ 2N NXk=1 f(xk)2 pXj=1 
osjE � 
os(m + k � 2)j�x;i.e., ff (xm) = a02 + 2pN f(xm) + 2N [m�1Xk=1 + NXk=m+1℄f(xk) pXj=1 
osjE: ( A12 )Equation (A12) is exa
t if the number of 
osine and sine terms in the trun
atedseries is the same. If N is odd there are equal numbers of 
osine and sine terms (seeabove), and the original signal 
an be re
overed by setting p = (N � 1)=2, and usingPNk=1 f(xk) = 0 sin
e the mean is a

ounted for by a0. However, if N is even andp = N=2 is used, it is 
lear that an extraneous 
osine 
ontribution has been in
luded;in this instan
e, then, an extra term must be in
luded in equation (A12) in order toensure re
overy of the original signal. The 
ode 
hooses to subtra
t,2N 12 NXk=1 f(xk)
os(k � 1)p�x
os(m� 1)p�x = 2N [12 NXk=1 f(xk)(�1)m(�1)k℄(thus giving ff (xm) = f(xm)), i.e.,ff(xm) = a02 + 2pN f(xm)� 2N [m�1Xk=1 + NXk=m+1℄f(xk) 12 + 
os(p+ 1)E � 
ospE2(1� 
osE) !16



�Æp;N=2 2N NXk=1 f(xk)2 (�1)k+m: ( A13 )This extra term is 
onstru
ted in OFILTR.dk from the variable COSNPI. However,COSNPI is in
orre
tly 
oded with,COSNPI(IM) = 
os(IM �=2);and should simply be, COSNPI(IM) = 
os(IM �):Again, sin
e PNk=1 f(xk) = 0, the formulae indeed return the original values.B Sum of a Cosine SeriesOFILTER.dk depends on the following result for the sum S. All transforms havebeen redu
ed to su
h sums over 
osines so that this analyti
 result 
an be used.Consider the series, S = QXj=P 
j
osj�; ( B1 )for real � and 
 (� 6= 0). Then,S = QXj=P 
j<[expij�℄= <0� QXj=P 
j[expij�℄1A ; ( B2 )so that, S = < 
Q+1expi(Q + 1)�� 
P expiP�
expi�� 1 ! ( B3 )using the formula for the sum of a geometri
 series. Thus,S = < 
Q+1[
os(Q + 1)�+ isin(Q + 1)�℄� 
P [
osP� + isinP�℄[

os�� 1℄ + i
sin� ! ;17



so that, S = 
Q+1[
os(Q+ 1)�(

os�� 1) + sin(Q + 1)�
sin�℄(

os�� 1)2 + 
2sin2��
P [
osP�(

os�� 1) + sinP�
sin�℄(

os�� 1)2 + 
2sin2� ;S = 
Q+1[
osQ�� 
os(Q+ 1)�℄� 
P [

os(P � 1)�� 
osP�℄1 + 
2 � 2

os� ;giving the �nal result in the form,S = � 
Q+1[
os(Q+ 1)�� 
osQ�℄ + 
P [

os(P � 1)�� 
osP�℄1 + 
2 � 2

os� ! : ( B4 )For most purposes of interest 
 = 1, the lower limit P = 1 and the upper limitQ = p, where p represents the number of modes to be kept. For these limits the sumbe
omes, S = �12 �  [
os(p+ 1)�� 
osp�℄2(1� 
os�) ! : ( B5 )C Fourier DampingThe stru
ture of the o
ean model pla
es a strong 
onstraint on the 
omputationaleÆ
ien
y of a Fast Fourier Transform, making it une
onomi
 to implement Fourierdamping in its full form. This se
tion des
ribes a 
ompromise te
hnique whi
h willmaintain stability with less severe e�e
ts than Fourier 
hopping, and whi
h maybe implemented in the o
ean model with only a small in
rease in the 
al
ulationsat ea
h timestep. It represents, however, a more stringent 
onstraint than the fullimplementation of Fourier damping.The �ltered �eld is now taken to be,ff(k�x) = pXj=1bjsin(jk�x) + NXj=p+1�
jbjsin(jk�x); ( C1 )where � and 
 are to be determined. It is readily seen that this is an extension of the
hopping te
hnique. The shortest wave fully retained is still given by equation (7),shorter waves being damped, sin
e �
j < 1 is imposed.18



In order to determine the values of � and 
, the growth rates of the unstable wavesmust be determined. This is done by 
onsidering the numeri
al stability problem asin Annex C of F1. Let the growth rate of a wave of the form sin(jk�x) be Ak. Then,for stability to be assured,�
k � 1Ak for p < k � N: ( C2 )Clearly, with only the values � and 
 available to �t these 
onstraints some form ofoptimal values must be 
hosen. One method is suggested here. De�ne,dk = 1Ak and D = fdk : p < k � Ng; ( C3 )� = max(D): ( C4 )Then set, 
 = min(1=(�Ak)1=k) : p < k � N: ( C5 )This 
hoi
e of � and 
 will preserve the property �
k � 1=Ak (ex
ept for trun
ationerrors) while maintaining a larger value of 
 than if � = 1. Note that in most 
ases� = 1=Ap+1 sin
e waves be
ome more unstable as their wavelength de
reases.While equation (C1) will maintain stability there will still be a marked redu
tionin the amplitude of the �rst damped waves. This may indu
e spurious 
omputationalmodes, although these should be less important than in the 
ase of Fourier 
hoppingdue to the retention of shorter waves, albeit at redu
ed amplitude, and to the absen
eof the abrupt 
hanges in trun
ation with latitude. In pra
ti
e it would be prudent touse (1� �)�
k ( C6 )as the damping fa
tor for sin(k�x) for some small �, whi
h may be a
hieved byrede�ning �, in order to allow for e�e
ts not 
onsidered in the linear stability analysis.The appropriate formulae to use may be derived from those of Appendix A, andare given below for 
ompleteness.Cosine Transform19



Here, xk = (k � 1=2)�x, E = (k � j)�x, and F = (k + j � 1)�x.ff(xk) = �f + pN f(xk)�2N [k�1Xj=1+ NXj=k+1℄f(xj)[14 + 
os(p+ 1)E � 
ospE4(1� 
osE) ℄� 2N NXj=1 f(xj)[14 + 
os(p+ 1)F � 
ospF4(1� 
osF ) ℄+ 
N+1 � 
p+1N(
 � 1) !�f(xk)+2�N [k�1Xj=1+ NXj=k+1℄[f(xj) 
p+1(

ospE � 
os(p+ 1)E) + 
N+1(
os(N + 1)E � 
osNE)4(1� 2

osE + 
2) !℄+2�N NXj=1 f(xj) 
p+1(

ospF � 
os(p+ 1)F ) + 
N+1(
os(N + 1)F � 
osNF )4(1� 2

osF + 
2) !( C7 )Sine TransformHere, xk = k�x, E = (j � k)�x, and F = (j + k)�x.ff (xk) = 2N + 1[k�1Xj=1+ NXj=k+1℄f(xj) 
os(p+ 1)F � 
ospF4(1� 
osF ) � 
os(p+ 1)E � 
ospE4(1� 
osE) !
+ 2N + 1f(xk) 14 + p2 + 
os2(p+ 1)xk � 
os2pxk4(1� 
os2xk) !+ 2�N + 1[k�1Xj=1+ NXj=k+1℄ 
p+1(

ospF � 
os(p+ 1)F ) + 
N+1(
os(N + 1)F � 
osNF )4(1 + 
2 � 2

osF ) !� 2�N + 1[k�1Xj=1+ NXj=k+1℄ 
p+1(

ospE � 
os(p+ 1)E) + 
N+1(
os(N + 1)E � 
osNE)4(1 + 
2 � 2

osE) !+ 
N+1 � 
p+1
 � 1 ! f(xk)2 + 
p+1(

os2pxk � 
os2(p+ 1)xk) + 
N+1(1� 
os2xk)4(1 + 
2 � 2

os2xk) ( C8 )20



Full SeriesHere, xk = (k�1)�x, E = (m�k)�x, and �f the mean signal is taken to be zero.ff(xm) = � 2N [m�1Xk=1 + NXk=m+1℄f(xk)[12 + 
os(p+ 1)E � 
ospE2(1� 
osE) ℄ + 2pN f(xm)�2�N [m�1Xk=1 + NXk=m+1℄f(xk)[
p+1(

ospE � 
os(p+ 1)E)(1 + 
2 � 2

osE) ℄ + 2�N f(xm) 
Q+1 � 
p+1(
 � 1) !�2�N [m�1Xk=1 + NXk=m+1℄f(xk)[
Q+1(

os(Q+ 1)E � 
osQE)(1 + 
2 � 2

osE) ℄�2ÆQ;N=2N �
Q NXk=1 f(xk)(�1)m+k; ( C9 )where Q = N=2 or Q = (N � 1)=2 for N even or odd, respe
tively, and Æa;b is zero orone if a 6= b or a = b, respe
tively.
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1 2 3 4T

UFigure 1: Grid point de�nitions for a �ltered row. The tra
er points (T) are labelledby x and the velo
ity points (U) by o. The hashed areas lo
ate land. The numbersabove and below label the tra
er and velo
ity points on the se
tion to be �ltered,respe
tively.
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Figure 2: Cartesian 
omponents of velo
ity �eld for �ltering along 
onstant latitude
ir
les. 22


