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INTRODUCTION

In the current (level) ocean models used at the Met. Office, the mixing of momen-
tum and tracers are treated as though they were distinct processes, with Richardson
number dependent diffusion coefficients for momentum and a combination of diffu-
sion coefficients and a bulk mixing scheme at the surface (so called ‘Kraus-Turner’
schemes) for tracers. While there is indeed evidence that momentum is not as well
mixed as tracers near the ocean surface, it is actually the turbulent vertical fluxes
which mix the tracer field through the nonlinear advection term. For this reason
the turbulent (eddy) diffusivities should be treated in the same way for both mo-
mentum and tracer fields. Nevertheless, this formal difference between the mixing of
momentum and tracers is part of the ocean code up to and including version 4.4.

Large, McWilliams and Doney (1994), hereafter referred to as LMD, have pro-
posed that mixing of both momentum and tracers should be done in terms of vertical
diffusion coefficients alone, thereby abandoning the need for the Kraus-Turner bulk
schemes for tracers. The layer at the ocean surface is now viewed as a boundary layer
between the ‘calmer’ ocean in the thermocline and below, and the atmosphere above.
This boundary layer is forced by the relevant surface fluxes above, and the mixing
results from turbulent fluxes throughout the layer. The application of the relevant
turbulent scalings results in the generation of vertical diffusion coefficients for both
tracers and momentum. These coefficients are deemed to carry all the information
necessary to represent the vertical mixing processes.

As the Met. Office ocean model has grown, so has the number of options and
hence possible configurations. The scope of this report is thus aimed at detailing the
possible vertical diffusion and mixing options available up to and including version

4.5 — it is up to the user to decide which combination is the best.

1. Implicit Vertical Diffusion Update

1.1 Numerical Formulation



In the end, whatever method is used to determine the vertical diffusion coefficients

K(z) where z is the vertical coordinate, a diffusion equation for a given parameter

'X" of the form,
oX 0 0X
= (k%) ()

needs to be solved. Since the vertical scales in the ocean model are much smaller
than the horizontal scales, explicit updates of equation (1) would impose impossibly
small values for the timestep. To that end equation (1) is solved fully implicitly by
writing,

0 3Xn+1
Xt — Xt = 2A¢— (K(z)"—1 ) :
k

0z 0z )
thereby guaranteeing a numerically stable solution. Here the time level is given by
the superscripts, the vertical levels by the subscripts. The ocean code uses a leap-
frog scheme in time (hence the 2At step), with the diffusion coefficients calculated as
functions of the ocean state at the time level (n — 1).

The grid used in the vertical is shown in Figure 1, with the index ‘k’ labelling the
positions of X increasing away from the ocean surface, whereas the actual depth ‘7z’
increases upwards. The points where K is found lie half-way between each pair of X
points, and are labelled by v. Here the first K point is at the ocean surface given by
v = 1; the first X point £ = 1 is half-way between the first two K points. Figure 1
also shows relevant distances between grid points, the names being those used in the
actual code. The variables dz and dzz are spacings between grid points, whereas zdz
and zdzz are the actual depths of each point relative to the ocean surface z = 0 at
v=1.

Resolving equation (2) spatially about grid point & gives,

2At oxntl oxnt
Xn+1 o anl _ = anl - anl
k k dz (( 0z )Vk ( 0z )Vk+1>’ )

and so the differencing of the remaining spatial terms gives,

n+1 n—1 __
Xk _ch -

2At<K3;1<X£_+%—X,?“> Kﬁkﬁ(XZ“—Xzif)) ”
de ’

dzz,, dz2y,.,
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Collecting all the forward (n + 1) terms on the left hand side of equation (4) yields,
—aap Xt 4 0b X — cop XH = X, (5)

where bby, = 1+ aay + ccg. This is a standard tridiagonal system which can be solved
in any number of ways; in the present code the routines VDIFCALC and VDIFCALT
do this for momentum and tracers, respectively. These routines set up the coefficients
aag, bbg, and ccx. The matrix is assumed to be eliminated to form a lower-triangular

system such that at each level &,
—eer, Xt + Xt = f £ (6)

Consider a pair of rows such that row k£ + 1 is in equation (6) form, and row k£ in
equation (5) form. Eliminating X,?;Lll between the equations for row £+ 1 and row &
results in,

—aakX,?fll + (bbk — CCk€€k+1)X;;+1 = X,?_l + Cckffk—l—l-

Tidying up gives the required form for row £ as,

_ Xn—l
(bb — adg )X]?j—ll _{_ Xle-l — bk:b + cckffk+1 ) (7)
k — €€k11CCk k — €€k4+1CCk

This is in the form of row £+ 1 now, so the general forms for ee; and f f; are evident;
and indeed these are the expressions used in the code. The terms ee; and ff; are
dependent on eey 1 and f fri1, respectively, so they are obtained by a sweep up the
water column from k¥ = KM to k = 1. Once all the coefficients ee, and ff; are
obtained, then a further single sweep down the water column obtains the required
solution Xp*! from equation (6).

The problem is fully specified when the boundary conditions at the top and bottom
of the water column are included. Clearly the base of the column will at some level
k be bounded by land, and the boundary condition imposed there is to set KS;I =0
for each land point k. This feeds through into the matrix as cc, = 0 for each ocean

point k that is bounded below by land.



At the ocean surface v = 1 there may be a flux @ of X such that,

(z{%_X) Q. ®)

Substituting this expression in equation (3) at point £ = 1 the top two rows of the
matrix now become,

bo XM — co X0t = ffy
—eea X7 + X3 = [ o,

where ffi = X]" ' + (2AtQ)/dz;,. Eliminating between rows 1 and 2 as before, the

solution for the top row is then,

+ceif fo
Xn+1 — ffl )
! bb; — eeycey 9)

In the routines VDIFCALC/T the upper boundary condition is determined by setting
aa; = 0 and explicitly putting in the form for ff;.

1.2 Truncation Errors in the Vertical

If the grid spacing in the vertical is a constant Az, say, then the spatial differencing
above results in a leading truncation error term proportional to Az?. This is true
even if the diffusion coefficient K is not constant with depth.

However, it is not practical to perform climate simulations with a uniformly re-
solved ocean in the vertical. A non-uniform grid is necessary, and this was anticipated
above by labelling the relevant grid spacings with the index k£ or v,. The truncation
error in this case reduces to leading order terms of the form Adz(1—r)+ BdzZ(1+
r) + ... for constants A and B, where r is the ratio of successive layer depths, i.e.,
r = dzy4+1/dzk. The effect of the nonuniform grid is to formally lower the trucation
error to terms dependent on dzj and (1 —r). Figure 2 shows r as a function of depth
for a typical 20 level ocean configuration run at the Met. Office. Not only are there
regions where r is not close to 1, but r itself suddenly changes at about 30m depth

and again at about 1000m.



Formally, the truncation error relates to how rapidly errors decrease as the res-
olution is varied. In climate simulation terms this may not be too relevant, given
the relatively slow rate at which model resolution changes occur. However, the de-
gree of grid nonuniformity r is known to impact on wave propagation, degrading the
numerical dispersion relations further and introducing spurious wave reflections in
regions where r is significant. The impact on the fully implicit solve detailed above
is not clear; however, most of the ocean code is advanced explicitly, thus raising the

(distinct) possibility of noise generation in the code by the nonuniform grid.
2. Richardson Number Dependent Parameterisations

So, given the relevant vertical diffusion coefficients, section 1 shows how the mo-
mentum and tracers can be updated. In this section the most widely used param-
eterisations of the vertical mixing coefficients are discussed. These schemes assume

that the mixing depends only on the gradient Richardson number, Ri4, at each point

riy = (2) (G + G2r) (10)

in the ocean:

po 0z
where g is the gravitational acceleration, p, and p are reference and actual densities,
and v and v are the zonal and meridional velocities.

Parameterisations of this form are referred to as ‘K-theory mixing’, and the two
in the code are those due to Philander and Pacanowski (1981) (‘P + P’) and Peters
et al (1988). The diffusivities from these are set in the routines VERTCOFC/T
for momentum/tracers, and at version 4.5 a logical LLOPANDP set to T/F selects
P + P or Peters et al, respectively. Although these schemes are strictly formulated
to provide appropriate simulations of the equatorial undercurrent (in particular the
strong shear zone at the undercurrent edges) the code sets the diffusivities from these
schemes everywhere in the ocean, i.e., at all latitudes and longitudes and all depths.

In the deep ocean the above parameterisations result in small background values of

the diffusivities relative to those in the upper layers. It turns out, however, that these



background values are not consistent with tracer diffusivities observed to occur in the
ocean at depth (see Krauss (1990)). Indeed the background values are a few orders
of magnitude too small. In order to overcome this weakness, a vertically profiled
value of the tracer diffusivity must be added to the values arising from the K-theory
schemes. This particular diffusivity is carried around by KAPPA _B_SI (set in routine
OSETCON), and is a diffusivity that increases with depth. It is simply added to the
diffusivities coming from the K-theory schemes for tracers in routine VERTCOFT.

2.1 STATEC or STATED : That is the Question?

As equation (10) shows, Ri, depends on the vertical gradient of the density, or
more correctly, the potential density. The ocean code has two routines for calculating
the potential density p, called STATEC and STATED. The former calculates p with
respect to a reference level either just above or just below the layers of interest. The
latter finds the p of each layer relative to the surface.

The distinction between the routines arises from the nonlinear nature of the ocean
equation of state for p, and the differences become exaggerated the deeper the layer of
interest is. Indeed, using STATED actually results in negative values of Ri, in some
deep basins in the ocean (notably the Argentine and Brazil basins). The original
code in VERTCOFC/T asserted that negative Ri, should be set to Ri, = 0; in the
diffusion parameterisations, Ri, = 0 results in the maximum values of the diffusion
coefficients. Thus the incorrect use of STATED at depth results in erroneously high
diffusivities in some basins.

While some may argue that high diffusivities at depth arising from the turbulent
bottom boundary layer are realistic, it was never the intention of the P+ P and Peters
et al schemes to produce them. And indeed, the proper application of a local measure
of p through STATEC removes the problem altogether. This has been included in the
version 4.5 code. The choice of which scheme to use is flagged by the logical variable

L_OSTATEC, being T/F for STATEC/D, respectively.



3. Bulk Mixed Layer Schemes

The Richardson number schemes, while formally applied everywhere, are known to
significantly underestimate the mixing that takes place in the relatively shallow zone
between the atmosphere above and the calmer thermocline below. The effect on the
momentum is to produce Ekman currents that are too strong relative to the local
geostrophic currents, and that are too far to the right of the wind (in the northern
hemisphere) (see Gordon and Roberts, 1997). The impact on tracers is to give surface
layers that are too stratified relative to the well-mixed layers anticipated for tracers.

A solution to these problems is to implement a separate mixing scheme specifically
for the surface region. And indeed such schemes for tracers are well documented,
coming under the generic name of ‘bulk mixed layer schemes’. The particular flavour
used in the Met. Office ocean code is the ‘Kraus-Turner’ (K-T) bulk scheme, and is
detailed in UMDP No. 41 by Foreman (1990). The scheme uses energetic arguements
to mix the upper layer, guaranteeing neutrally stable vertical profiles for the tracers
down to depths dependent on the balance between the energy available to drive the
mixing, and the local structure of the layer being mixed.

The K-T scheme is fundamentally different from the diffusion equation approach
in its application; the differential nature of the latter is to be contrasted with the
‘physical’ application of the former. However, when the K-T scheme is applied to
tracers, the simulated upper layers are more than adequate representations of those
observed. Applying K-T schemes to momentum is another matter; the vertical struc-
tures produced for tracers are not what are found for momentum, so the bulk schemes
are clearly not at all appropriate in this case.

Early versions of the ocean model lived with this mixture; momentum was updated
via a single diffusion equation solve (VERTCOFC/VDIFCALC), while the tracers had
both a diffusion equation solve (VERTCOFT/VDIFCALT) followed by a K-T sweep
(MIXLAY) to tidy up the upper layers. The surface current errors therefore remained.

4. Oceanic Boundary Layers : ‘Large et al’ Schemes
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It would be satisfying if the vertical mixing of momentum and tracers came from
a single formulation. The pick and mix nature described previously could then be
abandoned. Such a formulation is described in LMD, in which mixing at all depths in
the ocean can be cast in the form of equation (1). The major result of LMD is to find
a prescription for the diffusion coefficient K(z) that can represent the processes in
the upper layers, in the thermocline region (particularly the equatorial undercurrent)
and in the deep ocean.

LMD build on the experience of atmospheric modellers who treat the transition
zone between the ground and the ‘free air’ above as a turbulent boundary layer.
Within the oceanic boundary layer (OBL) the diffusion coefficients are found as pa-
rameterised functions of the vertical turbulent fluxes, and further depend on whether
the surface forcing is stable/unstable, i.e., the tendency of the forcing to result in a
more/less stable layer, respectively. Once the coefficients are obtained it is then a
simple matter to solve equation (1) as described. The key for the ocean is to find the
right parameterisation for K (z) for the variety of conditions possible in the OBL for

both tracers and momentum. LMD argue that their formulation is the key.
4.1 The LMD Scheme

The two steps leading to the diffusion equation for the boundary layer are,

0X  d0<wz>(2)
ot 0z ’
linking the time evolution of X by layer eddies to the vertical turbulent flux < wz >,

and
0X

9z’

the assumption that the turbulent fluxes are dependent on the vertical gradient of X

<wz > (2) = —K(z2)

with the constant of proportionality being K. The result of these is to give equation

(1).

The main steps in the LMD scheme are;
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(1) Use the Richardson number parameterisations (or other equivalents) to set
Ky(z) at all depths in the ocean;

(2) Determine the forcing terms at the ocean surface;

(3) Find the boundary layer depth h(z,y) consistent with the state of the water
column at each point (z,y);

(4) Find K(z) within the OBL between the ocean surface and h(z,y) such that
K (z) suitably matches the values for Ky(z) found in (1) at hA(zx,y);

(5) Finally solve equation (1).

In the LMD scheme, the parameterisation for the diffusivity takes the form,

K (o) = hw(o)G(0), (11)

where w(o) is the turbulent velocity scale, G(o) is a dimensionless vertical shape
function, and o is the dimensionless coordinate varying between 0 at the ocean surface
to 1 at a depth d = h (i.e., 0 = d/h with d being the depth). This form shows that
K is proportional not only to the turbulence within the layer through w(o), but
also depends on the layer depth h, thereby reflecting the ability of deeper boundary
layers to contain larger (and presumably) more efficient eddies. This choice of K also
ensures that the surface layer turbulence is confined to the boundary layer.
The turbulent velocity scale is of the form,
w(o) m 2ok
"~ a(d/L)’

where &, is von Karman’s constant (usually 0.4), u, is the friction velocity given by,

(12)

U2 = To/ Pos (13)

where 7, and p, are the surface stress and density, respectively. The Monin-Obukov
length scale L is given by,
L =u/(k,By). (14)

where By is the surface buoyancy forcing.
The functions ®(d/L) are empirically determined from measurements, but “there

is no concensus about their precise functional form”. The effect of ®(d/L) is to scale
12



w(o) with respect to Kyu,, such that ®(d/L) = 1 for neutral forcing, i.e., (d/L) =
0, and ®(d/L) is less/greater than 1 for unstable ((d/L) < 0)/stable ((d/L) > 0)
conditions. These functions have different scalings for momentum and tracers; thus,
along with the respective surface boundary conditions, the LMD formulation is able

to accommodate all the vertical mixing processes in a single scheme.
4.2 Ocean Model Flavours of the LMD Scheme

At version 4.5, there are two possible implementations of the LMD scheme, referred
to as ‘Quadratic Large’ (QL) and ‘Full Large’ (FL).

4.2.1 QL

This is a scaled-down version of the LMD scheme, and has been designed to deal
with the surface current errors noted in section 3. The function G(o) is chosen to be
a quadratic function, viz,

G(0) = ap + a10 + a0 (15)

There is no turbulent transport across the ocean surface, implying that K = 0 there;
this can only be satisfied by setting ay = 0. Equation (12) for w(o) is obtained on the
basis that near to the surface a; + as0 =< wz > (d)/ < wz > (0). Clearly, a; =1
for this relationship to hold at the ocean surface. The remaining coefficient is set by
requiring that K from equation (11) is equal to Ky at the layer depth d = h, giving
ay = ((Ko(h)/(hyu)) —1).

The QL scheme also takes the basic profile to be neutral, so that the function
®(d/L) is always equal to 1. This approximation removes the need to find L and
so the QL scheme is relatively insensitive to the surface forcing. A final concern
is guaranteeing that K within the boundary layer be positive definite. For the
coefficients in the QL scheme this is so since turning points will occur only when
o =1/(1 - (Ko(h)/(hkyuy))); clearly the turning points are outside the layer range
0<o<1.

13



The QL scheme improves the surface current errors, but as it is a reduced version
of FL, it is not considered sufficient to provide a realistic mixed layer for tracers. It
is therefore still necessary to use the K-T scheme through MIXLAY to generate the
surface mixed layer for tracers. When the QL scheme is chosen through the logical
variable L_OQLARGE, it is applied to both momentum and tracers by the setting
of the diffusion coefficients in VERTCOFC/T and the solution of equation (1) in
VDIFCALC/T, exactly as before.

4.2.2 FL

In FL advocated by LMD, the shape function G(o) is chosen to be a cubic, thereby
introducing an extra constant as. The extra boundary condition is now not only
continuity of K at h, but also continuity of the first derivative of K at h. Applying
all these conditions at d = h results in,

dG(1)
oo’

dG(1)
0o '’ (16)

a; = —2+3G(1) — a3 = +1—2G(1) +

with,

_ Koy(h) 0G(1) _ 0Ky(h)/9z  Ko(h)Ow(l)/0o
~ hw(1)’ oo w(1) hw?(1) '
Note that the sign of 0Ky(h)/0z in equation (17) is correct; the derivatives are with

G(1) (17)

respect to o which increases (downwards) in the opposite sense to z. Using equation
(17) to get G(1) and 0G(1)/0c leads to ay and as, and hence G(o). Unlike QL, FL
evaluates the turbulent velocity scale w(o) in equation (12) using ®(d/L).

Does the FL scheme guarantee a positive definite K in the upper layer? Since

ap = 0 equation (11) can be written,
K(o) = hw(o)o¥(o), U(o) =1+ ayo + azo’. (18)

V(o) at 0 =0 and 0 = 1 is 1 and G(1), respectively, thus at each end of the range
of interest ¥ (o) is positive. To prevent a zero of ¥(o) occurring between o = 0 and

o =1 it is sufficient to require that 0¥/do < 0 at 0 = 1. Using equations (16) and

14



(17) it can be shown that,

ov 0G(1) 0Ky(h)/0z

—(1) = — -Gl + —= . 1

90 V= "0 w)y GO0 TE ) (9)
Both G(1) and w(o) are positive. If the forcing is unstable (L < 0) then LMD
limit w(o) such that dw(1)/dc = 0. In this case setting 0Ky(h)/0z > 0 satisfies
the constraint 0¥(1)/0oc < 0. For stable forcing, it can be shown that the term

1 ow(l)

~G(1) =

multiplying G(1) in equation (19) is positive, so that 0Ky(h)/0z > 0 is again sufficient
to guarantee positive K (o) for all conditions.

So, in order to prevent unphysical negative K (o) values in the boundary layer,
the routines VERTCOFC/T check the sign of 0Ky(h)/0z; if it is less than zero, then

the code resets the value to be zero.
4.2.3 UM Atmosphere Approach

The LMD scheme is based on parameterisations used by the atmospheric modelling
community. Following their lead, a variant used by the UM atmosphere modellers is
now available within the ocean model. Equation (11) remains the basis for determin-

ing K(o); however G(o) is now taken to be,
G(o) = o(1 — as0)?, (20)

where, as before, ap = 0 and a; = 1 have been used to match the surface conditions.
Unlike FL, equation (20) has only one free parameter, a,. This is set by matching
to Ko(h). In this case, Ky(h) is not the diffusivity from the background, but is a
diffusivity K,,; parameterised in terms of an explicit entrainment velocity, we,; say,

calculated at the boundary layer depth hA. The matching condition requires,

as = 14£,/G(1), (21)

where G(1) = Kpi/(hw(1)). The positive root for ay leads to a zero for K (o) in the
boundary layer and so the negative root must be chosen. This choice in equation (20)

guarantees a positive K (o).
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The UM modellers impose a further constraint on a4 by arguing that the K (o)
profile should not peak at the boundary layer depth A. The reason for this is that it
is felt that the contribution there should generally be smaller than that at the heart
of the layer. This can be achieved by not letting a, get too small; i.e. effectively

limiting the parameterised amplitude of K,;. Thus, a4 is chosen as
as = mazx(l —/G(1),2/3). (22)

Note that the resultant K profile from this scheme will now be discontinuous
at the layer base. The amplitude of this jump will presumably reflect the amount
of entrainment occurring there. The details of this vertical entrainment scheme pa-
rameterisation (“VESPAR”) to determine we,; and hence K., are given in section
4.6.

4.3 Numerical Aspects of the LMD Scheme

The point of FL is the unification of vertical diffusion and mixing into a single
formulation. The implementation of FL. must therefore dispense with the K-T scheme.
It is now important to consider where within the computational cycle to actually solve
equation (1) using FL.

In the UM Ocean code, equation (1) is cast numerically in the form of equation
(2), so that the required solution X?*! is obtained by stepping forward from the
previous solution X?~*. This is the strict interpretation of equation (2) as written.
However, the interpretation of X} ™' depends on when exactly equation (1) is solved
within a single cycle of the ocean code.

There is no K-T scheme for momentum. Thus in routine CLINIC the time at
which K is found via VERTCOFC and equation (1) is solved in VDIFCALC are
not compromised by the use or otherwise of a LMD scheme. However, for the tracers
using the K-T scheme, the actual step to obtain the mixed water column via K-T does
not take place until other processes have been accounted for in the column of water.

Such processes include the contributions due to penetrating radiation (in routine
16



SOLADD), surface changes due to fluxes between ice and the ocean (ICEFLUX),
and adjustments preventing water temperatures falling below a minimum temperature
TFREEZE (FREEZEUP). The surface fluxes of heat and salinity are also accounted
for by assuming that they are initially absorbed in the top ocean layer (SFCADD).
Once all these updates have been performed the K-T scheme proceeds to impose the
full mixing.

As a consequence, the K-T scheme operates not on X Z’l but rather a next best
update, X L("_l) say, incorporating all the processes just described. Separating out
all the factors leading to X };(n_l) enables a range of ‘complex’ physical processes to
be applied that are not easily expressible in the simple differential form of equation
(1). In VDIFCALC, conversely, the surface boundary fluxes are included. There is
no ‘splitting’ of processes in the momentum update.

With K-T present VERTCOFT and VDIFCALT are performed before all the
above-mentioned processes are added in. Clearly, if FL is to replace K-T, then equa-
tion (1) must be solved where K-T presently sits; in this way the diffusion process

) which has incorporated the surface boundary conditions

can update from X[
through SFCADD. Thus, when FL is used VDIFCALT must now be called from
where MIXLAY presently is. This movement of VDIFCALT is important since equa-
tion (1) is solved in VDIFCALT subject to the upper boundary condition of zero flux
through the ocean surface. The actual transfer of the boundary fluxes is of course
via SFCADD which produces an update for X" in X1 consistent with those
fluxes.

Note that if SFCADD is called after VDIFCALT then the value of X {"~" is sim-
ply the value placed in it by SFCADD. On the other hand, if SFCADD is called first,
then the implicit solve in VDIFCALT implies propagation of the bottom boundary
conditions up the water column in the first sweep, followed by the final update sweep-

)

ing down the water column. The sweeps interact with X J{("_l , modifying it on the

way up, and then using that new value to influence the solution on the way down.

4.4 The Boundary Layer Depth in LMD Schemes
17



The final crucial element in the LMD schemes is the determination of the boundary
layer depth h. At h, K in the OBL is to some degree ‘forced’ by Ky(h) and its
vertical derivative through equations (16) and (17). Furthermore, the amplitude of
K is directly proportional to h (see equation (11)). LMD propose that A is determined
by use of a bulk Richardson number of the form,

Rid) = S v )

where B, and V, are the buoyancy and currents averaged over a near surface layer

defined by 0 < 0 < € (where typically e = 0.1), and B(d) and V(d) are the respective
values at depth d. The term V;? is meant to account for turbulent velocity shear
within the layer, which is “most important in pure convection and other situations of

little or no mean shear”. This is given as,
Vi (d) = A(N(d)dw(d)), (24)

where A is a constant, and N(d) is the stratification. Equation (24) has been derived
by taking the case of pure convection, and then going over to the general case with
the purely convective result as a necessary limit.

The term V2 is intended to represent the impact of entrainment processes occur-
ring at the base of the mixed layer. Thus A is not the depth of the mixed layer, h,,
say, but will actually lie at some deeper point depending upon the relative amplitude
of V2 and the strength of the surface forcing through B,. The ‘typical mixed layer’ on
which LMD base their analysis to derive the V;? is shown in Figure 3. The so-called
‘penetrative convection’ invoked by LMD generates eddies whose extent reaches be-
yond h,,, thereby enabling the entrainment of fluid from below. Between h,, and h
there is a buoyancy jump of the order B, — B(d) (assuming, of course, that this layer
is so well mixed that the buoyancy is constant from the surface down to h,,), and
it is this jump that external processes have to work against in order to entrain the
heavier material below. In generalising V;? it is intended that Rij, given by equation
(23) will cover all processes leading to entrainment; the proof of this will be in the
eating.

18



The depth h is defined to be where Rz, is equal to a critical bulk number Rip,,
say. The constants A and Ri,. are determined by running a variety of experiments
for different oceanic conditions, and obtaining the best fits to observations; LMD find

that A ~ 4.4 and Riy. =~ 0.3 are appropriate.

4.5 The LMD Boundary Layer Depth in the UM Ocean Models

The QL version of the LMD scheme represents a (useful) simplification since it
provides a fair representation of the turbulent Ekman layer. The depth A is set by
using a gradient Richardson number and finding where a critical number CRIT_RI
(usually 0.3) occurs. There is also a limit imposed on the maximum depth that A
can be, set by the parameter MAX_QLARGE_DEPTH (usually 80 m); A is seen as
a measure of the boundary layer depth and so it would seem sensible to limit its
extent to the ‘surface’. Clearly, in regions where strong convection from the surface
downwards is occurring (for example the northern Atlantic in winter) then A on the
basis of CRIT_RI alone could be many hundreds of metres.

CRIT_RI_FL and MAX_LARGE_DEPTH are the equivalent parameters for FL.
The model can also set h via a gradient or bulk Richardson number using the rou-
tines CALC_MLD_LARGEG/B, respectively. The choices reflect the fact that the
form recommended by LMD does not (at time of writing) produce an adequate sea-
sonal variation in the modelled mixed-layer depths relative to the climatology. The
experience is that using Ri, with a CRIT_RI_FL of 0.3 and a MAX_LARGE_DEPTH
of 80m produces mixed layers that are generally much too shallow, particularly in the
southern ocean in the southern hemisphere summer months. The reasons for these
results are not obvious, but appear to be related to the inability of the Ri, to handle
entrainment (and hence layer deepening) when stable layers are wind driven.

The best combination found to date is to use a gradient Richardson number with
a CRIT_RI_FL of 1 and again set MAX_LARGE_DEPTH to 80m, giving a depth h,,
say. If the layer is stably forced (L > 0) then a second depth Ay, say, is calculated
which is proportional to L itself, since theory suggests that in such conditions L is a

19



natural scalelength for the boundary layer. If L > 0 then A is set to be the larger of
hg or hy. Seasonal variations of mixed layer depths are now vastly improved relative

to the Ri;, formulation.

4.6 VESPAR Details

Figure 3 shows that in the ‘idealised’ mixed layer, the buoyancy is close to a constant
B, down to h,,. There is then a jump AB at the layer base over a distance Az before
there is a more gradual decline in buoyancy into the thermocline and beyond. In
terms of a turbulent flux of buoyancy < wb > associated with the jump AB it is
plausible to suggest that,

< wb > (hy) X Wert AB = Koy AB/ Az, (25)

so that the parameterisation we seek is simply Ko, = WeniAz.

In common with all these schemes, the critical issue is determining the boundary
layer depth at which to find K,,;. At present this is done by finding where the gra-
dient Richardson number exceeds CRIT_RI_FL (typically set to 1). The relationship
between this point and the grid used in the model is shown in Figure 4. The Richard-
son number is found at the v points. So, suppose the critical number is exceeded
at ¥ = 3; the boundary layer depth is then simply taken to be zdz, (see Figure 1).
There is no attempt to interpolate between grid points. Since the density is found
at the k points, the buoyancy jump calculated is that straddling the bottom of the
layer, with an associated Az = dzz3 in this case.

If the surface forcing tendency is unstable, i.e., the Monin-Obukov length L is

negative, then the “empirical rule of convection” is invoked, viz
< wb > (hy)/ < wb > (0) = constant = —0.2,

so that the upward flux at the surface < wb > (0) is associated with a downward
convective flux < wb > (h,,) at the layer base. It is this “penetrative convection” that

supplies the excess turbulent kinetic energy to enable entrainment of fluid below the
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layer to be mixed up into the layer, thereby leading to layer deepening. Identifying
< wb > (hy) = —wen AB (as before) the parameterisation is then

0.2 < wb > (0)
AB '

(26)

Went =

In the stable case it seems pertinent to appeal to the bulk layer ideas used to derive
the Kraus-Turner scheme. If the wind mixing energy through u,? is the dominant

term then (approximately),
WenthmAB ~ 2X\u,2 f(2), (27)

where ) is a constant (typically 0.7), and f(z) is a term that modulates u,> so that
its effect dimishes with depth. Typically f(z) = exp(—2z/d), where § is a constant of
the order of 100m.

4.7 Vertical Components from Isopycnal Diffusion

Routine TRACER is the driver for the tracer processes. In particular, the isopyc-
nal diffusion is implemented here. As the Ocean UMDP 51 by Roberts (1999) details,
all the components of the isopycnal diffusion that contain horizontal derivatives are
updated explicitly via routine ISOFLUX. The purely vertical component (labelled ‘zz’
in the matrix) has to be updated implicitly to avoid severe timestep constraints. This
isopycnal component is added to that set in VERTCOFT (through variable GNU) in
routine AI_CALC, eventually emerging in variable K33. Before VDIFCALT is finally
called to do the total vertical diffusion update, K33 is passed into variable FK3_GNU.

4.8 UMUI Vertical Diffusion at Version 4.5

To take account of the unification implied by FL, the UMUI windows at version
4.5 now reflect the extra choices available. They are clearly set up to reflect the fact
that FL and K-T are mutually exclusive; you can only have one or the other. And as
previously noted the logical variable L_OPANDP is available to select between P + P

or Peters et al.
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One extra choice of interest relates to the method used to calculate the surface
friction velocity wu,, defined in equation (13). There u, is given in terms of the
magnitude of the stress 7,. However, the stress is a function of the atmospheric
winds, and so the value passed to the ocean within the model depends on how often
the atmospheric fields are coupled to the ocean. This coupling period is usually taken
to be one day, i.e., over each atmospheric timestep (typically half an hour) 7, is
recorded, summed and then meaned before being finally used to force the ocean.

The stress, however, is a vector, so that it is plausible that over a day the com-
ponents could reverse, leading to a mean value close to zero, whereas in fact there
had been significant forcing applied throughout the day. To overcome this possible
shortfall, u, can be calculated using not a vector but a scalar, the so-called wind

mixing energy (wme), such that,

u’ = wme,/ po. (28)

A logical variable L. OUSTARWME reflects this choice, being T/F for u, being found
through equation (28)/(13), respectively.

5. Testing the Vertical Mixing Schemes

It has to be said that LMD present a fairly exhaustive set of tests of their scheme,
for both a range of surface forcing conditions, and (just as importantly) for different
vertical grid spacings and staggerings. In particular there are a lot of “single column
model” experiments that permitted tuning of the various parameters advocated by
LMD. And indeed it is this flexibility that is perhaps most appealing about the LMD
scheme; it is arguably more appropriate than the bulk models for the general range
of conditions and scales that are found both in the ocean and in the ocean models,
and the mixing formulation for tracers and momentum is unified.

However, it also has to be said that our experience with the FL version of the
LMD scheme is that it does not do a good job of modelling the wind-driven stable

layers, particularly those in the southern ocean around March; the tendency is for
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the layers to be too shallow, thus warming (even more) the southern ocean relative
to climatology. This weakness motivated the inclusion of VESPAR, which, despite
the simplicity (and crudeness) appears to work very well in all seasons. Unlike LMD,
however, VESPAR has only been tested in the global ocean model. No specific test
tuning has been done (although experience from the Kraus-Turner modelling has of
course been used).

Caution then in the long run. There is a very strong grid dependence built into
these schemes, first through the determination of the boundary layer depth, and
then through the parameterisation of the processes at that depth. LMD appeal to
continuity in their matching, and interpolate so that the scheme appears to operate on
(piecewise) continuous information. This would seem to reduce the grid dependence
to some degree, and is suggested by the results from their tests. However, the weak
link in LMD appears to revolve around determining the layer depth; the use of R;,
in equation (23) does not seem to capture the entrainment processes satisfactorily,
despite the presence of V2.

By directly attacking the entrainment flux, VESPAR mitigates the LMD problems
(at least for the global model). However, there is a very strong grid scale built in,
since there is no attempt to interpolate, and the buoyancy jump is entirely that found
between the grid points spanning the critical depth. Furthermore there is an inbuilt
arbitrariness in that the coefficient a4 is limited in amplitude in order to maintain
a ‘“realistic” diffusion profile through the boundary layer; this may be appropriate
when there are many grid points resolving the layer, but may be suspect when the
layers are shallow and hence (relatively) poorly resolved.

For present coarse vertical scales, the VESPAR approach may be entirely appro-
priate. However, as the grid scale decreases further there are legitimate concerns over
both the determination of the layer depth, and exactly where the buoyancy jump is
that contributes to the entrainment flux. It may be that VESPAR in its present form

will scale poorly to finer grids, whereas LMD will perform well. Time alone will tell.
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Figure 1: Vertical grid labelling in the ocean model.
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Figure 2: Rate of change of grid spacing ‘r’ with depth for typical model set-up.
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Figure 3: Boundary layer depth definitions for a typical well-mixed zone.
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Figure 4: Grid labelling for VESPAR scheme.



