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1.        Introduction

     Sea-ice plays a unique and important role in the global climate
system. It not only interacts with both the ocean and the atmosphere, but
interferes with direct communication between them. In attempting to
simulate climate by developing global coupled atmosphere-ocean models, we
are thus obliged to devote some attention to modelling sea-ice.

     The presence of sea-ice has many consequences. Perhaps the most
obvious of these is the change in surface albedo: ice-free ocean has an
albedo of about 0.06 (except when the solar zenith angle is very high), but
the albedo of snow-covered ice can easily exceed 0.8. There is thus the
possibility of positive feedback between decreasing ice cover and
increasing absorption of solar radiation at the surface; this ’ice-albedo
feedback’ is generally regarded as a potentially significant mechanism for
amplifying climatic changes.

     Sea-ice also constitutes a barrier to the direct exchange of sensible
heat and moisture between the ocean and the atmosphere. As a simple example
of the effect of thermal insulation, consider an (idealised) sheet of
uniform sea-ice two metres thick. If the temperature of the top surface of
the ice is -20°C, the conductive heat flux upwards through the ice will be
roughly 20 Wm : an order of magnitude less than the heat flux that would-2

be lost by the ocean if ice were absent. A relatively thin covering of snow
on the ice can make a  significant further reduction in the heat loss.

     Another important aspect of sea-ice is its influence on the salinity
of the surface layers of the ocean. As sea-water freezes, most of its salt
content does not become incorporated into the ice, but is instead
discharged into the water below. Since the density of sea-water is an
increasing function of salinity, this discharge of salt tends to
destabilise the water column and thus enhances convection in the surface
mixed layer. Conversely, the melting of ice deposits relatively fresh water
at the surface and so reduces vertical mixing. Furthermore, in regions
where the rate of ice production is high, the resulting cold saline water
can be dense enough to sink to very deep levels, forming ocean bottom
water.

     The advection of sea-ice by winds and currents not only alters its
geographical distribution, but also results in a transport of heat and
salt. Ice tends to melt, on average, in lower latitudes than it forms.
Since latent heat is released during freezing and absorbed during melting,
there is consequently a net negative heat transport towards the equator.
Similarly there is a negative equatorward salt transport, for the reasons
explained in the previous paragraph. Most of the processes described above
are represented in the sea-ice model to be described in this note, although
in many cases the representation used is very simple with room for
improvement.  In the next section, a very brief review of sea-ice modelling
is given, to provide a source of background information for the interested
reader. This is followed in sections 3 and 4 by a description of the model
as presently implemented.
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2.        Review

     A full review of the large body of literature on sea-ice modelling
will not be attempted here. However, it is worth considering some of the
most influential papers. They may be divided into two broad categories:
those that deal only with the thermodynamics of sea-ice, and those that
also model ice dynamics. 

     A highly detailed treatment of sea-ice thermodynamics was set out by
Maykut & Untersteiner (1971). Their one-dimensional model includes such
refinements as the effect of internal heating due to the penetration of
solar radiation, and the variation of thermal conductivity with depth due
to non-uniform salinity. They also used a (vertical) resolution of 10 cm,
which typically corresponds to 20 to 40 levels. Admirable though  this work
is, Maykut & Untersteiner’s model is so complex that it is unsuitable for
use in global climate studies, where there are many competing demands on
the available computing resources. Semtner (1976) therefore produced two
simplified thermodynamic models intended for use in large-scale
simulations. One of these has three layers: two of ice and one of snow. The
other is an even simpler version which became known, somewhat confusingly,
as the zero-layer model, because though it provides for a layer of ice and
a layer of snow, temperatures within the ice and snow are not computed. In
a subsequent paper, Semtner (1984) compared the performance of his
three-layer and zero-layer models with the Maykut & Untersteiner model,
using boundary conditions characteristic of the central Arctic. He
concluded that the price of the simplicity of the zero-layer model is some
reduction in the accuracy with which the seasonal cycle of ice depth is
simulated. The zero-layer model slightly overestimates the amplitude of the
cycle and advances its phase by up to a month, so that melting begins in
May instead of June, for example.

     A model that includes a fairly sophisticated representation of the
dynamics of ice, as well as thermodynamic effects, was devised by Hibler
(1979). Hibler’s model calculates the field of ice velocities from a
momentum equation which includes the effects of wind and current stresses,
Coriolis force, the internal ice stress, and the tilt of the sea surface.
It is the treatment of the internal ice stress that introduces the greatest
complications. Hibler chose to model sea-ice as a nonlinear viscous
compressible fluid, with its viscosity dependent on the rate of
deformation. The strength of the ice is also a function of its thickness
and the compactness of the ice cover.

     Attempts to model dynamical effects without the complexity and
computational expense involved in Hibler’s model have been made. For
instance, Parkinson & Washington (1979) decided not to include the internal
ice stresses explicitly, but to iteratively readjust the computed ice
velocity field in such a way that ice was prevented from excessively
converging into any grid box. This is probably the weakest aspect of an
otherwise well-constructed model, notable for a detailed parametrization
of the effects of leads. Hibler has produced a simplified version of his
model, the so-called cavitating fluid model, which takes account of
convergent stresses in the ice, but ignores the shear stresses, (Flato and
Hibler 1990). 
 

The representation of ice thermodynamics in th Unified Model is based
on Semtner’s ’zero layer’ treatment, with a leads parameterisation based
on that of Hibler (1979).  This may be used as it stands, or one of two ice
dynamics models may be included with it. The most widely used ice dynamics
option is a very simple scheme based on Bryan(1969) in which ice depth, ice
fraction and snow depth are advected using the surface level currents
calculated by the ocean model. The inclusion of this scheme has allowed
flux correction of ice depth to be dispensed with in coupled climate runs.
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The other ice dynamics option available within the UM is based on Hibler’s
simplified model, the "cavitating fluid" scheme, which neglects shear
stress. This option is computationally more expensive and has not been
shown to give significantly better results than the crude advection scheme
at climate resolution.
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3.        Description of Thermodynamic Model

The basic purpose of a thermodynamic sea ice model is to ensure that
the net heat fluxes from atmosphere and ocean into the ice, snow and leads
are balanced by  changes in ice and snow mass.  It is important to make
clear at the outset that the sea-ice model implemented in our system is
split into two parts. One part resides within the atmospheric model and
deals with the interactions between sea-ice and the atmosphere. The other
part resides within the ocean model and deals with the interactions between
sea-ice and the ocean, as well updating the primary ice model variables.
There are good reasons for this division, which was originally suggested
by Gordon & Bottomley (1984). On one hand, it allows the surface
temperature of the ice/snow system to interact fully with the diurnal cycle
of radiation. On the other hand, it allows changes in ice depth and
concentration to be carried out inside the ocean model, which reduces the
problems that arise when the status of a grid box (icy or ice-free) changes
part of the way through a coupling interval. A fuller discussion can be
found in the document by Gordon & Bottomley (1984) (although to avoid
confusion it should be mentioned that Gordon & Bottomley anticipated
updating the ice variables only once per coupling interval, whereas in the
eventual implementation the ice variables are updated with the same
frequency as the ocean model temperatures and salinities).

     Interactions between the sea-ice model and the atmospheric model thus
consist largely of the former providing a lower boundary condition (with
variable surface temperature) for the latter, which supplies in return
various forcing fluxes that are accumulated during the atmospheric phase
and used to update the ice model during the ocean phase. The way in which
the surface fluxes of long- and short-wave radiation are calculated for
grid boxes containing sea-ice is described in documentation paper 23 by
Ingram (1990), so a detailed description will not be repeated here.
However, as the specification of the surface albedo of sea-ice can have a
very important effect on the simulation of the ice, the albedo formulation
will be explained. The albedo of the sea-ice fraction of the grid box, � ,
is specified as a simple function of the surface temperature of the ice,
T, by fixing �  = �  = 0.8 at and below T = -10°C, �  = �  = 0.5 at T = 0°C,C M

and varying �  linearly with temperature between these two points. The
values �  and � , and the temperature range over which the albedo varies,C M

are specified through the user interface as parameters to atmospheric
physics section 1, Shortwave Radiation. This variation of albedo with
surface temperature has been used as a method of tuning the thermodynamic
ice model, but care is needed because increasing the albedo increases the
ice-albedo feedback and can make the model too sensitive to, for example,
changing cloud cover.  The albedo of the leads (open water) fraction of the
grid box is taken to be the same as that of open sea, 0.06. A grid box mean
surface albedo is then calculated from the albedos of the ice and leads
portions of the box, by weighting them with the fractional areas covered
by ice and leads respectively, and this is used in computing the effect of
multiple reflections between the snow/ice surface and the base of clouds
visible from the surface. Note, however, that the net downward surface flux
of short-wave radiation is computed separately for the ice and leads
portions of a grid box, as indeed is the case for long-wave radiation.  The
albedo calculations are carried out within the atmosphere model in
subroutine FTSA.

     One or two comments should be added before leaving the subject of
surface albedo. First, the temperature variation is intended to represent
such processes as the ageing of any snow cover and the formation of melt
ponds, as the surface temperature nears melting point. Note that the model
deals with the mean surface temperature of all the ice floes in a grid box,
and sub-gridscale variations will result in some locations having
temperatures slightly above or below the mean value. Thus it is appropriate
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(3.1)

(3.2)

to spread the albedo changes over a small range of temperatures. Secondly,
it may seem strange that the upper limit of this temperature range should
be the freezing point of fresh water rather than that of sea-water
(-1.8°C). It turns out that 0°C is a better choice for two reasons: any
snow that falls on the ice is of course non saline, and the salt content
of the ice itself gradually percolates downwards, so that with the
exception of floes less than a year old, the upper surface of the ice is
also low in salt. A freezing point of 0°C is also used in the atmospheric
boudary layer subroutines. Finally it should be clearly stated that the
present albedo formulation is simplistic. No account is taken of the
thickness of the ice, the depth of the snow cover, or the increase in
(spectrally-averaged) albedo under overcast skies. The importance of these
and other effects is discussed in a paper by Shine & Henderson-Sellers
(1985), which would be a good starting point for future work on improving
the albedo formulation. A proposal for a spectrally-dependent surface
albedo scheme for sea ice has been written by D.Roberts in Hadley Centre
internal note No. 35. (D. Roberts 1993)

     As well as radiative fluxes, the atmosphere model must supply the
sea-ice model with the turbulent fluxes of latent and sensible heat. Again,
these fluxes are calculated separately for the portions of a grid box
covered by ice and leads, with the appropriate Richardson number used to
characterise the stability of the surface layer in each case. Note that the
surface temperature of the leads is assumed to be T , the freezing point ofF

sea-water, for all purposes. This assumption may not be entirely
appropriate in the marginal ice zone, particularly in experiments which
include ice dynamics, as the top level ocean temperature can be
significantly above freezing in a grid square which includes the ice edge.
There is good observational evidence that the presence of even a small
fractional coverage of leads can increase the grid box average fluxes of
heat and moisture substantially. See, for example, the lidar data reported
by Barry & Miles (1988). Full details of the model’s boundary layer
formulation over ice and leads are given in documentation paper 24 by Smith
(1990).
      We now turn to the ice model itself. This is based on the
’zero-layer’ thermodynamic model of Semtner (1976), in which the prognostic
variables are surface temperature T, ice depth h , and snow depth h .I S

Temperatures within the ice and snow are not computed; the internal
temperature field is assumed to be piecewise linear (but see below), with
a change of gradient at the ice/snow interface because of the lower thermal
conductivity of snow. Thus the atmospheric half of the model uses an
’equivalent ice depth’ h , defined byE

where �  = � / �  is the ratio of the thermal conductivities of ice and snow.I S

The downward diffusive heat flux through the ice and snow is then F , whereD

This equation uses the fact that the temperature of the lower surface of
the ice must be T , since this is the temperature at which ice andF

sea-water can coexist in equilibrium. At present, T  is taken to be aF

constant, -1.8°C. However this is only a convenient approximation; T  isF

actually a function of salinity and pressure. While the pressure effect is
negligible, except beneath the ice shelves of the Antarctic, the salinity
dependence should not be dismissed altogether, and may be worth including
in future versions of the model.
     The prognostic equation for T is
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(3.3)

where F  is the net downward atmospheric heat flux at the surface of theA

ice (or snow, if present), and c  is an effective surface heat capacity.*

The surface heat capacity term was not part of Semtner’s zero-layer model,
which neglects heat storage by the ice and assumes a linear temperature
profile, as has already been noted. This term was introduced by Gordon &
Bottomley (1984) in order to improve the simulation of the diurnal cycle
of surface temperature. The constant c  is assigned a value corresponding*

to the heat capacity of a depth of ice proportional to the e-folding depth
of the diurnal temperature wave (about 20cm, giving 1/c =4.8e-6). Provided*

that this depth is much less than h , this procedure is satisfactory.  InE

the code, the reciprocal of c  is stored in comdeck C_SICEHC to avoid*

unnecessary divisions, and equation (3.3) can be found in the boundary
layer subroutine IMPL_CAL.  The calculation of F  occurs in subroutineD

SICE_HTF.  As pointed out by Gordon & Bottomley (1984), for thin ice floes
the surface heat capacity should be made to depend on the actual ice depth,
but this complication has not been included in the current version of the
model.  The inclusion of this heat storage term can introduce some
inconsistencies into the coupling of atmosphere and ocean models.  Since
the ice or snow surface temperature is not communicated to the ocean part
of the ice model, where ice melts completely, through basal melting, it is
possible for the heat required to raise the ice surface temperature to 0°C
to be neglected.  In practice, if the ice is about to disappear its surface
temperature is likely to be at, or close to, the melting point so any heat
source or sink will be negligibly small. (Locally it can be of order 0.1
W.m-2 but the global, annual total is mW. J.Gregory pers.comm.)

     One subtlety that was glossed over in the previous paragraph is that,
according to Gordon & Bottomley (1984), the F  term in equation (3.3)D

should be evaluated not with the instantaneous value of T, but with a
surface temperature averaged over a time interval of at least a day. This
is because the linear temperature profile assumed by Semtner’s model is not
applicable to the diurnal timescale. However, in practice the scheme has
never been implemented in this way: F  has always been computed with theD

instantaneous value of T. It would be quite feasible to follow the approach
originally intended by Gordon & Bottomley (1984), by computing F  duringD

the ocean part of the model. This would require the diurnal mean of T to
be passed from the atmosphere to the ocean model, and F  to be passed fromD

the ocean to the atmosphere model. Whether this would significantly improve
the simulation is an open question.

     As explained at the beginning of this section, the atmospheric part
of the model deals with the surface temperature of the ice/snow, while the
ocean part of the model updates the ice depth and concentration. Thus
equations (3.2) and (3.3) belong to the atmospheric part of the model. (In
fact they are present even when the atmospheric model is run in uncoupled
mode, with ice depths and concentrations specified from climatology.) The
way in which the two parts of the model communicate must now be considered.

During an atmospheric phase, F  is calculated using (3.2). TheD

time-average value of this diffusive heat flux is passed to the ocean
model, where it is to be used to control the ablation or accretion of ice
at the interface between the ice and sea-water. Another heat flux is also
diagnosed during the atmospheric phase. This is the surface melting heat
flux F , which is zero as long as the surface of the ice or snow remainsM

below melting point, taken to be 0°C for the reasons explained earlier when
describing the albedo calculation. If T attempts to rise above melting
point, the atmospheric model code in subroutine SF_EVAP resets it to
melting point and stores the corresponding positive heat flux implied by
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(3.4)

the temperature change in F . Thus if T  is the (fictitious) intermediateM Z

surface temperature (in Celsius), F  is given by M

where 
�
t is the length of the timestep. The time-averaged value of F  isM

also passed to the ocean model, where it is used to control melting at the
upper surface of the ice floe.

     In addition to the fluxes F  and F , (which are called TOPMELT andM D

BOTMELT in the ocean model), the atmospheric model also supplies the ocean
model with the rates of snowfall and sublimation. Whereas the snow depth
at land points is updated within the atmospheric model, the snow depth at
sea-ice points is updated within the ocean part of the ice model. Thus the
time-averaged rates of snowfall and sublimation are required. Of course,
in the absence of snow cover sublimation reduces the ice depth instead.
The time-averaged values of the net atmospheric surface flux over the leads
portion of sea-ice grid boxes, split into its non-penetrative and
penetrative components, are also made available to the ocean part of the
ice model. The "penetrative" component is all solar radiation in most
ocean-only experiments, but in the coupled model is defined as only Band
I of the four solar radiation bands (which contains the visible and near
IR part of the spectrum). The "non-penetrative" component is the sum of net
sensible and latent heat fluxes, and longwave radiative fluxes between
ocean and atmosphere. In the coupled model this includes bands II-IV of the
shortwave radiation. All these heat fluxes are combined because they are
absorbed within the top few centimetres of the ocean, the "penetrative"
flux being the exception. In practice, the fluxes are stored in the same
arrays as those used for the non-penetrative and penetrative surface fluxes
at ice-free ocean points (known as HTN and SOL respectively in the ocean
model). This has the advantage that if the status of the grid box changes
from icy to ice-free during an ocean phase, the ocean automatically
receives reasonable surface heat fluxes until the next atmospheric phase.
Conversely, if a grid box begins to freeze part of the way through an ocean
phase, sensibly-defined leads fluxes will be used.  The fluxes are also
weighted by the ice-free proportion of the grid box, giving grid box mean
fluxes. This allows heat to be conserved despite changes in the ice
concentration during ocean phases. Note that the sublimation rate and the
fluxes F  and F  are weighted by the ice concentration for the same reason.M D

As an aside, the wind mixing energy field, which is required as input to
the mixed layer model, is treated differently by the atmosphere model at
ocean and ice points. A special "leads" value of wind mixing energy,
calculated using the drag coefficient appropriate for leads rather than the
grid box mean, is supplied to the ocean at ice points. This is done because
the grid box mean value gave unrealistically deep mixed layers under ice.
Climatological values of wind mixing energy  are not usually available at
ice points for ocean only experiments.

 It is probably useful to pause here and discuss the ice model’s
requirements in ocean-only simulations.  The above discussion of
atmospheric fluxes applies to the coupled model. In experiments with the
ocean model, all surface fluxes are supplied as ancillary files with the
data taken either from observational climatologies or from previous
experiments with the atmosphere or coupled model.  There are two ways of
providing the ice model with these surface fluxes.  In experiments to spin
up the ocean, such as climate change experiments, it is often desirable for
the ocean-only stage to be as similar as possible to the coupled
experiments that follow it.  To do this, surface fluxes from a coupled
experiment are often averaged to provide an annual cycle of 5 day mean
forcing fields, which are then applied throughout the ocean experiment.
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In an experiment like this, the ice model would require those fields which
the atmosphere supplies in a coupled experiment, namely F  (or TOPMELT), FM D 

(or BOTMELT),  snowfall, sublimation, and the penetrative and non-
penetrative leads fluxes (SOL and HTN).  In fact the ocean model will
require the leads fluxes in any case.  One drawback with this type of
forcing is that the fluxes are fixed and therefore do not respond to
changes in ice depth and extent during the ocean experiment.  For example,
F  is inversely proportional to the ice depth so it can be quite large forD

thin ice, but thicker ice tends to lose less heat.  If F  is diagnosed inD

an experiment with thin ice at a particular location, but the ice
subsequently thickens in the spin up phase, the large heat loss appropriate
for thin ice will continue to be applied and runaway ice growth could
result.  In practise this effect would be masked by relaxation of the ice
depth towards climatology in many experiments, but it can make sensitivity
experiments hard to interpret.

Another option for supplying the ice model with surface fluxes is
available, in which F , F  and the non-penetrative leads flux to be used byD M

the ice model are calculated in subroutine PSEUDAIR.  The calculations use
total downward solar radiation and surface air temperature (1.5 m
temperature) as inputs, so these two fields must be provided as ancillary
fields, replacing F  and F . The Schutz and Gates air temperatureD M

climatology includes values at sea ice points, and zonal mean solar
radiation from the 3rd annual cycle (which had specified cloud) has been
used. Snowfall and sublimation may also be supplied from ancillary files,
but if climatological values are not available, fields of zeroes may be
included in the initial dump for these fields. This option avoids the
problem with changing ice depth described above, since the surface fluxes
are calculated within the ice model with changing ice depth and fraction
allowed for, but the subroutine used to calculate the fluxes is rather
crude, and would benefit from some model development work. A logical switch
in the user interface controls which type of surface forcing is used in
ocean only experiments.  In addition to the above fields, if the ice depth
is to be relaxed towards climatology (which is usually done only if ice
dynamics is not included), it is necessary to provide an ice depth
climatology, and it can be helpful if this is consistent with the
climatological SST field. (Note that at present this subroutine calculates
net solar radiation into leads, but this field is not used because it is
now usually applied within the ocean model. Since the climatological values
of net solar radiation, obtained from ancillary files, are likely to be
zero or missing data at sea ice points, it may be sensible to move the
calculation of this and the non-penetrative surface flux from ICE_CTL to
INIT_OCEAN_ICE and pass these values to the ocean model at sea ice points.)

Within the ocean model, the net surface fluxes over ocean or leads are
treated in a way which can be very confusing. I shall begin by describing
what happens in coupled models which include one of the ice model options
(except the "pseudo ice" model, which is discussed fully in Appendix B).
In all types of ice model, the penetrative surface flux through leads/ocean
(SOL) is used by the penetrative solar radiation code in the ocean model
as it is at ice free points. The only difference is that the net flux will
be smaller (because it was calculated only for the leads fraction of the
grid box). If the "thermodynamics only" version of the sea ice model is
selected, all the non-penetrative surface leads/ocean flux (HTN) is used
by the ice model to form or melt ice. In this case HTN does not affect
ocean model temperatures at ice-covered points. If either of the ice model
versions with ice dynamics are chosen, the non-penetrative surface flux is
split (in subroutine INIT_OCEAN_ICE) at grid points where ice has formed
so that part of it affects ocean temperatures, and the rest is used to melt
or form ice. This split is done, rather arbitrarily, using the ice fraction
A, so that A*HTN is used in the ice model and (1-A)*HTN warms or cools the
ocean. The splitting prevents excessive ice formation where small amounts
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(3.5)

(3.6)

(3.7)

of ice advect over a strongly cooling ocean. Ocean-only models which supply
coupled model like forcing for the ice model (as described earlier) treat
these two fluxes in exactly the same way, since they are assumed to have
been diagnosed in a coupled model. In ocean-only models which derive the
sea ice and leads fluxes from 1.5m temperature and downward solar
radiation, there are some subtle differences. As in coupled models, the
penetrative surface flux in leads is always applied to the ocean, and the
non-penetrative flux is split between ice and ocean if ice dynamics is
included, and used entirely to melt or form ice in thermodynamics-only
models. However, it is assumed that the climatological values of surface
fluxes supplied from ancillary fields (SOL and HTN) are valid only over
open ocean grid squares or the leads fraction of an ice-covered grid
square, i.e. that they have not been weighted at sea ice points by the
leads fraction to give a grid box mean flux as would occur in the
atmosphere model. For this reason the two surface fluxes (SOL and HTN) are
weighted by the leads fraction at sea ice points. The weighting occurs in
INIT_OCEAN_ICE for HTN and in FLXBLANK (called from TRACER) for SOL. 

      We now move on, to consider the ocean half of the thermodynamic ice
model. The general sequence of events is that first the snow depth h  isS

updated, followed by the ice depth h, and then the ice concentration A. One
slightly anomalous feature of the formulation is that the model works with
the ice depth averaged over the whole grid box, h, whereas the variables
introduced earlier, h  and h , are the ice and snow depths averaged over theI S

ice-covered portion of the grid box alone. Thus h and h  are related by:I

Let the rates of snowfall and sublimation be S  and S  respectively.  (TheirN B

units are kilogram per square metre per second.) Then the equation for hS
is:

where �  is the density of snow and L is the latent heat of freezing ofS

water. In practice, the snow depth is updated in two stages, first by the
snowfall and sublimation terms and secondly by the F  term. After eachM

stage there is a check to see whether h  has dropped below zero. If so, itS

is reset to zero, and any surplus energy implied to be left over is put
aside for input to the ice depth equation. The two stage process enables
excess sublimation and excess F  to be kept track of separately, which isM

necessary because the implied effect on ocean salinity differs in the two
cases. For present purposes the corresponding combined surplus heat flux
from these terms will be denoted by X.

     The ice depth equation is complicated by the need to take account of
the change in ice depth due to the net surface heat flux into the leads
fraction of the grid box, F .  This is made up of net shortwave andL

longwave radiation (only Bands II-IV of the shortwave), sensible and latent
heat fluxes, which have been combined into the nonpenetrative surface (HTN
or HEATFLUX), and weighted as described above. Thus F  is the net non-L

penetrative surface heat flux for leads in the sea ice heat budget (i.e.
not including the part which affects ocean temperatures).  Writing the
prognostic equation for the grid box mean ice depth as

where R  and R  are the rates of change of h due to net fluxes over the iceI L

and leads respectively, we have:
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(3.8)

(3.9)

(3.10)

(3.11)

In these equations, �  is the density of ice and F  is the heat flux fromI B

the top layer of the ocean into the ice, to be discussed later. The term
C is a latent heat flux, which is generated by resetting ocean surface
temperatures which fall below freezing point to T  during the ocean modelF

part of the integration, and storing the implied heat flux in array
CARYHEAT for use by the ice model. If the ocean surface temperature falls
below T  at a point with no sea ice, ice formation is triggered. (This isF 

done in subroutine FREEZEUP, which also takes care of unrealistic
temperatures, at any level of the ocean, that may have been produced by
advection or isopycnal diffusion by mixing the heat down.  A similar
exercise is carried out in subroutine REFREEZE, after Fourier filtering the
ocean temperature field, but filtering is not allowed to trigger ice
formation.)

     The heat flux from the ocean into the ice, F , is assumed to beB

related linearly to the difference between the temperature at the base of
the ice and the temperature of the top layer of the ocean, T . Thus1

where �  is the density of seawater, c  is its specific heat capacity, andW P

d is the thickness of the first ocean layer.  Here K is an ’eddy diffusion
coefficient’ (in m.s ) which is effectively a tunable parameter, chosen-1

through the user interface (the HADCM2 transient experiments used a value
of 2.5e-5 W.m-2.K-1). Increasing K increases the positive heat flux from
ocean to ice per degree temperature difference. Note the dependence of FB
on the depth of the first ocean level, which means this parameter requires
alteration if the vertical resolution is changed (for example in the slab
model, with a 50m mixed layer). This parameterisation of F  has been usedB

before, for example by Pease (1975). It was criticised on several grounds
by Parkinson & Washington (1979), but is perhaps the best that can be done
without implementing a proper boundary layer scheme. For observational
estimates of F , see MacPhee (1992) and Omstedt and Wettlaufer (1992).B

Incidentally, F  has been included in the contribution to the net flux forB

the leads portion of a grid box (3.10), because there seems to be no
obvious physical reason why there should not be an upward heat flux in the
entire surface layer of the ocean, instead of only beneath the ice-covered
portion.  Recent experiments with the version of the model which includes
ice advection suggest that in future it may improve the simulation if this
point, and the treatment of fluxes in leads and at the ice edge generally,
are reconsidered.

     Changes in the ice concentration associated with thermodynamic
processes are modelled using a formulation that Hibler (1979) used in his
combined dynamic-thermodynamic model. The assumptions underlying this
formulation are discussed at length in Hibler’s paper. They lead to the
following equation:

where H is the Heaviside function, defined to be zero when its argument is
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negative, and one when its argument is positive. The parameter h  can beO

thought of as representing the minimum depth to which newly-formed ice must
grow before it is counted as belonging to the ice-covered fraction of the
grid box. Following Hibler’s recommendation, this parameter has been
assigned a value of 0.5m.  Before leaving (3.11), it should be mentioned
that M Bottomley & C Gordon (personal communication) and also O S Lee
(personal communication) have independently discovered that (3.11) is not,
in fact, entirely consistent with the assumptions made by Hibler (1979).
The second term in (3.11), which represents the opening up of leads when
the ice is melting, is inaccurate when the ice is close to disappearing
altogether. At present it is considered that this defect in the scheme is
not important enough to warrant correction.

     Since completely unbroken ice cover is very rarely encountered in
reality, because of small-scale deformations of the ice pack, A is
prevented from exceeding an upper limit, currently set to be 0.995 in the
Northern Hemisphere and 0.98 in the Southern Hemisphere. This practice was
adopted by Parkinson & Washington (1979); the limits are somewhat arbitrary
but reflect observational evidence that Antarctic ice tends to be less
compact. In addition, as long as h remains non-zero A is prevented from
dropping below a lower limit, currently set to 0.001. This device is
intended to avoid the risk of numerical problems associated with very small
values of A. As another safety measure to prevent numerical problems in the
atmosphere model, h itself is never allowed to become smaller than 0.0001m.
Any smaller amounts of ice are melted, with the latent heat required to do
this borrowed from the ocean.

     The snow depth h  was defined earlier to be averaged over theS

ice-covered part of the grid box only. It is assumed that the snow cover
is in fact uniformly distributed over the ice floes in a grid box. This
means that changes in A imply further changes in h . If A has increased,S

the model redistributes the existing mass of snow over the wider area of
ice in the grid box. On the other hand, if A has decreased, the snow on the
portion of ice that melted is treated as falling into (and cooling) the
leads, so that h  is left unchanged.S

It is worth mentioning here that although F  is the major heat fluxB

from the upper ocean into the ice, heat flux C (obtained by resetting sea
surface temperatures to T ) and the various additional bits of heat used byF

the ice model, such as the latent heat of melting snow mentioned above,
also transfer heat from ocean to ice and vice versa.  All these additional
heat fluxes are combined and stored in an array called CARYHEAT which is
held in the dump.  Within each ocean timestep, first all the ocean
calculations are completed, including the addition of heat flux C to the
ocean and its storage in CARYHEAT.  After this the ice model calculations
are carried out, and C is included in the ice and snow heat budget so array
CARYHEAT is no longer required to store it.  The ice model also diagnoses
the additional little heat fluxes such as melting snow in leads and
requires to communicate these with the ocean model on the next timestep.
In order to save space, the same array CARYHEAT is used to store this heat
flux in the dump for use by the ocean on the next timestep.  Because of
this double use, if an accurate heat budget calculation is to be done
CARYHEAT must be diagnosed twice.  Heat flux C is available as a section
30 diagnostic, and the miscellaneous heat flux from the ice model is
available as a section 0 ocean prognostic variable.  Neither of these
fluxes is likely to be much larger than 1 Wm  in the present model-2

formulation, but they can cause a great deal of confusion. 

     Early versions of the model (as run on the Cyber) exhibited a tendency
to produce unrealistically large accumulations of snow in some areas. A
further modification to h  is therefore made, to represent the formation ofS

so-called ’white’ ice. This is ice that forms at the snow/ice interface
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(3.12)

(3.13)

(3.14)

when snow accumulates to such an extent that it depresses the ice below the
waterline, observed in particular in Antarctic pack ice. Water then
infiltrates the snow and tends to freeze there, forming ’white’ ice. Ledley
(1985) pointed out that this process is important because it restricts the
thickness that the snow layer can attain, and therefore its ability to
insulate the ice layer from atmospheric cooling. Using the hydrostatic
equation, one can show that if w is the height of the waterline above the
bottom of the ice, and �  is the density of water, then:W

If w, as given by this equation, exceeds h , then the model turns a depthI

(w-h ) of snow into ice.  A.Keen and W.Ingram (personal communication)I

found a small error in the way this has been implemented in the present
model, which has not yet been corrected (although it is implemented
correctly in the slab model).

     One important topic that has not yet been addressed in this section
is the impact of changes in the ice and snow depths on the salinity of the
ocean surface layer. In representing this effect, the salinity of ice, S ,I
is taken to be uniform. This is quite unrealistic, but justified in view
of the complications that would be involved in keeping track of the history
of the ice. The value assigned to S  is at present 0.006; snow, on theI

other hand, has zero salinity.  When sea-water freezes, not all the salt
content of the water is incorporated into the resulting ice. If the
salinity of the top layer of the ocean is S (typically in the range
0.030-0.035), the salinity increment 

�
S associated with a change 

�
h in ice

depth is given by:

where C  is a correction to allow for sublimation, to be discussed later.SB

Now a curious assumption has been made in deriving this equation, namely
that the mass of liquid water in the top ocean model grid box is
independent of changes in the volume of ice. In order to understand why
this assumption was made, it is helpful to consider the alternative.
Suppose that when part of the water in the surface grid box froze, the mass
of ice thus formed was deducted from the mass of liquid water in the box.
In order to be consistent, all ocean model code that dealt with exchanges
of momentum, heat and salt with or among surface layer grid boxes would
need to be amended. The trouble caused by doing this would almost certainly
outweigh any benefit gained.

     The correction term in equation (3.13) arises because a reduction in
ice depth due to sublimation does not liberate relatively fresh liquid
water to reduce the salinity of the ocean, as would be the case if the ice
had melted. Indeed, in order to conserve salt it is actually necessary to
increase salinity to take account of the small salt content of the sublimed
ice. The correction term can be shown to be:

In this equation the sublimation rate S  should, of course, be interpretedB

as the excess sublimation after any snow has been disposed of ( cf the
discussion following equation (3.6) ). Furthermore, the Heaviside function
is a reminder that any negative sublimation (i.e. deposition of frost)
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(3.15)

(3.16)

(3.17)

increases the snow depth and has no effect on salinity.

The salinity increment resulting from melting snow (see equation
(3.6)) is given by

where 
�
t is the timestep and the weighting factor A appears because hS

applies only to the ice-covered part of the grid box, unlike h. Note that
the snowfall and sublimation increments to h  do not directly affect theS

salinity (though they do so indirectly, by altering the amount of snow
available for later melting).In addition, the model takes account of the
salinity changes due to snow falling into leads and the conversion of snow
to ’white’ ice. In the conversion of snow to ’white’ ice, a depth (w - h )I
of snow is converted, where w is as defined in equation 3.12. This implies
a salinity increment of

due to’ white’ ice formation. Where the fractional area of snow-covered ice
has decreased by amount 

�
A, an amount of snow h .

�
A. �  is assumed to fallS S

into the leads and melt. A salinity increment of 

where 
�
A is less than zero, is therefore added to the ocean on the next

time step.  The salinity increment calculated by the ice model is stored
in array CARYSALT and added to the ocean top level on the next timestep by
subroutine ICEFLUX.

It is now necessary to discuss the discretisation in time of the ice
model equations. At first sight this appears to be simple; a forward
timestep equal to the ocean model tracer timestep. Unfortunately matters
are far from simple! The problem is that the ocean model uses a leapfrog
timestepping scheme in which the values of temperature, salinity, currents
etc are stored at two time levels, say levels n-1 and n. The new values at
time level n+1 are generated by adding increments over a timestep of length
2
�
t to the old values at time level n-1. This contrasts with the ice model,

in which values at time level n+1 are generated by adding increments over
a timestep of length 

�
t to the values at time level n. As a further

complication, the ocean model occasionally makes a forward timestep, for
instance on the first step after restarting from a dump. It does this by
copying the time level n data to time level n-1, and multiplying fluxes etc
by 

�
t instead of 2

�
t. The result of all this is that it is easy to become

confused when thinking about the detailed interactions between the ice and
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ocean models, but in practise energy conservation can be maintained by
passing heat fluxes between the two and multiplying by the appropriate
timestep in each model.  This results in slight non-conservation on the
ocean forward timesteps, but an attempt to correct this involved extra
variables stored in the dump and resulted in an unstable ocean simulation
with split solutions so was abandoned. 
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4. The Dynamic Sea Ice Models

Sea ice models which represent only thermodynamic processes have many
shortcomings but have often been used in climate models because including
a realistic parametrisation of ice dynamics can be computationally very
expensive.  The thermodynamic sea ice model which has been used by the Met.
Office does not simulate the large  annual range of southern hemisphere sea
ice extent very well. The arctic extents can be made quite realistic with
careful tuning and flux correction, but the thickness distribution is
affected in the climate system by ice-ocean dynamics in the Arctic Basin,
and this is not simulated by the model.  The thermodynamic model has also
shown itself to be relatively unstable when the flux correction fluxes,
which are required to prevent climate drift, are used. Two ice model
versions which incorporate ice dynamics are now available within the
unified model system. The simplest, which has been used in the HADCM2 suite
of transient climate change experiments, is a crude advection scheme based
on that used at GFDL (Bryan 1960ish). The other is the cavitating fluid
scheme of Flato and Hibler (1990 & 1992), which is computationally much
more expensive and does not show an improvement in performance commensurate
with this cost. The cavitating fluid scheme (which is used by the FOAM
forecast suite 28/9/95) is described in Appendix C. The simpler scheme,
which uses the same advection, is described below.

The simple advection scheme for sea ice diagnoses the total surface
current from TRACER, and uses this to advect ice thickness, ice
concentration, and snow depth. In order to avoid duplication of code, the
upwind advection scheme used is that developed for the cavitating fluid ice
dynamics scheme, on an Arakawa C grid. The total current is interpolated
from the ocean B grid to the C grid, and ice depth is also interpolated to
the C grid velocity points. If ice thicker than 4.0m (on the C grid) would
be advected up the thickness gradient, the current component at that point
on the C grid is zeroed. This is done as a crude parameterisation of the
greater resistance of thick ice to convergence. The advective change in ice
depth, part of the continuity equation, is given by

where h is the mean ice depth. Similar equations hold for ice
concentration, A, and grid box mean snow depth (A.h ). The layout of the Cs

grid used is shown in Figure 1 below. For each face of the grid square
surrounding an ice depth point, a test is carried out on the sign of the
velocity and the advective increment to ice depth determined as follows:

Face 1�
h(u(i,j)) = u(i,j)h(i,j+1)   length1/area 

�
t  if u(i,j) � 0�

h(u(i,j)) = u(i,j)h(i+1,j+1) length1/area 
�
t  if u(i,j)<0

Face 2�
h(v(i,j)) = v(i,j)h(i+1,j)   length2/area 

�
t  if v(i,j) � 0�

h(v(i,j)) = v(i,j)h(i+1,j+1) length2/area 
�
t  if v(i,j)<0

Face 3�
h(u(i+1,j)) = u(i+1,j)h(i+1,j+1) length3/area 

�
t  if u(i+1,j) � 0�

h(u(i+1,j)) = u(i+1,j)h(i+2,j+1) length3/area 
�
t  if u(i+1,j)<0

Face 4�
h(v(i,j+1)) = v(i,j+1)h(i+1,j+1) length4/area 

�
t  if v(i,j+1) � 0�

h(v(i,j+1)) = v(i,j+1)h(i+1,j+2) length4/area 
�
t  if v(i,j+1)<0

where 
�
t is the timestep. Lengths 1 to 4 are the lengths of the faces round

each grid square, calculated using spherical geometry. Land points are
masked. Similar calculations are done for ice concentration, and the
product of ice concentration and snow depth, which will not be repeated
here.
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Figure 1Figure 1  C grid velocities and ice depths

 After the advective increments have been calculated and added (in
subroutine ICE_ADVECT), del2 diffusion is applied to ice depth (only in the
simple ice advection scheme). The diffusion coefficient is supplied through
the user interface and a value of 2000. m s  was used in HADCM2. Since the2 -1

upwind advection scheme used is itself very diffusive it may be worth
reducing or removing the del2 diffusion of ice depth when an opportunity
arises. The diffusion code is almost identical to that used in ocean
subroutine TRACER, which is described in the Cox model documentation. The
only significant difference within the ice model is that the land sea mask
is extended to include open ocean grid points before diffusion increments
are calculated. This prevents diffusion extending the ice edge, although
advection is permitted to do so.

The ice dynamics routines are called immediately before the
thermodynamic subroutine ICEFLOE updates the ice depth etc.  Advection
changes the ice thickness and fraction, and snow depth which are passed to
ICEFLOE ( also the logical array ICY which depends on ice fraction).  If
more than the minimum ice depth is advected into a previously ice-free grid
square, and thermodynamic ice was about to form, the ice formation logical
NEWICE is set to false, and the grid square is treated by the
thermodynamics as one where ice already exists. 
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Appendix A: The Pseudo-Ice Model

     For ocean-only integrations in which a full ice model is not required,
the ’pseudo-ice’ model may be used. The object of this code is to mimic the
effect of sea ice on the surface boundary conditions of the ocean, without
explicitly modelling the ice. The model consists of the following steps,
performed at each tracer timestep:

     i.   Wherever the predicted temperature is less than or equal to some
critical value T0 (typically -1.8°C), the temperature is set to T0.

     ii.  Under climatological ice points (these will usually be determined
as being those points where the climatological sea surface temperature is
less than or equal to T0), temperature and salinity at the top model level
are set to their climatological values. Surface fluxes of heat and
freshwater are set to zero at these points, as is the wind mixing power
(used in the mixed layer model).

     iii. Convective mixing between adjacent levels is suppressed wherever
one of the levels is at a temperature less than or equal to T0. This
ensures that climatological ice points remain at T0 at the end of the
timestep, and are not changed by convective mixing.

     iv.  For latitudes at which filtering is performed, steps i and ii are
repeated after the filtering.
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(B.1)

(B.2)

(3.2)

Appendix B: The Pseudo-Atmospheric Model

      For ocean-only runs which include the full ice model, forcing data
are required which would normally come from the atmospheric part of the ice
model. The ’pseudo-atmospheric’ model mimics the atmospheric section by
providing the thermodynamic ice model with the forcing fluxes it requires,
calculated from climatological forcing data. 
     The atmospheric ice model usually supplies rates of snowfall and
sublimation, S  and S , the net surface heat flux into the leads fraction,N B

F , the downward diffusive heat flux through the ice, F , and the surfaceL D

melting heat flux, F . In the model, monthly mean climatological snowfallM

rates and sublimation rates  are read in PP format, and made cyclical if
cyclic boundary conditions are being used. Where no sublimation data is
available a field of zeroes can be included in the initial data. Heat
fluxes are calculated by the pseudo-atmospheric model from surface air
temperatures and incident solar radiation. At present an air temperature
dataset from Schutz and Gates and solar radiation from the 3rd Annual Cycle
are being used. The former includes sea ice points, and the latter was
derived using prescribed, zonally averaged clouds. Values are therefore of
the correct magnitude, if highly zonal in character. ’Pseudo-haney’
forcing, and a simple representation of changing albedoes are used to
calculate the required heat fluxes from this data.
     The albedo used for the leads is the same as that used for the open
ocean, namely � =0.06. For the ice and snow fractions, the albedo
formulation is the same as that used in the CYBER pseudo-atmospheric model,
and is different from that used in a fully coupled run. Icy grid boxes are
divided into four categories depending on the presence or absence of snow
cover, and on whether melting is occurring. Each category has a fixed
albedo as follows:

            Dry snow            � =0.8
            Melting snow        � =0.65
            Dry bare ice        � =0.7
            Melting bare ice    � =0.5

A snow depth of h =0.01m is chosen, somewhat arbitrarily, as the minimumS

depth of snow to affect albedo. Snow depths less than this are treated as
bare ice.
     The heat flux into the leads, F , is calculated in two parts as isL

done in the atmospheric model, from the relation

where H is the haney coefficient, currently set to 163.76 Wm K , T  is the-2 -1
a

surface air temperature in Celsius, and F  is the incident solar radiationS

taken from the 3rd Annual Cycle.  The first term gives the non-penetrative
heat flux, and the second gives the penetrative heat flux over the leads.
In this calculation � =0.06 as for the ocean model, and the symbols
represent the same quantities as in the main body of the text. The leads
fraction is assumed to have constant temperature T = -1.8 °C.F

     For the ice fraction, equation B.1 becomes  

where T is the surface temperature of the ice or snow, an unknown, and �
varies as described in the previous paragraph. The diffusive heat flux, F ,D
is given by
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(B.3)

(3.5)

as in the atmospheric part of the full ice model. To solve for T, we assume
that the surface temperature, T, is less than zero, so that the frozen snow
and ice albedoes apply, and no surface melting occurs. In this case F  = FD A

( neglecting surface heat capacity since there is no diurnal variation in
the mean forcing fields ) and we can solve for the snow/ice surface
temperature T.

If the value of T obtained from this is less than zero, we have a
consistent solution and F  is set equal to zero. The calculated value of TM

is then substituted into (3.2) to calculate F .D
     If T obtained above is greater than zero then melting must be
occurring, and the albedoes used in its derivation were inappropriate. The
result is still valid however, because substituting the ( smaller )
albedoes appropriate for melting conditions introduces a discontinuity at
zero and further increases an already positive temperature. In this case
T is assumed equal to zero ( the melting point of snow and sea ice ) and
substituted into equations (B.2) and (3.2) along with the altered albedoes.
Values are thus obtained for F  and F  ( when melting occurs the two are notA D

equal ), and the surface melting heat flux, F , is then obtained fromM

equation (3.5)

This completes the calculation of heat fluxes required by the thermodynamic
ice model. If cyclic boundary conditions are being used all the heat fluxes
are made cyclic in the pseudo-atmospheric model before they are passed to
the ocean half of the ice model.
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(C.1)

(C.2)

(C.3)

(C.4)

Appendix C: Description of Cavitating Fluid Scheme

This appendix describes the details of the cavitating fluid ice
dynamics calculations (see Flato and Hibler 1993) as implemented in the
unified model. Advection is done using the upwind scheme (on an Arakawa C
grid) which is described in Section 4, so what follows is a description of
how the ice velocities are derived from dynamic forcing by atmosphere and
ocean.

 The momentum balance for sea ice, where it is being treated as a
continuum, is usually written as

where m is the snow and ice mass per unit area, u is the ice velocity, t
is time, f is the coriolis parameter 2 � sin � , kk is the upward unit normal,�  and �  are forces per unit area due to air and water drag respectively,a w

g is the acceleration due to gravity, H is the sea surface dynamic height,
and F is the force per unit area due to variations in internal ice stress.
( This equation neglects the non-linear momentum advection term. This term
is usually omitted, even from quite complex models, partly because it can
be shown to be small in most cases through a scaling analysis, and partly
because it is very difficult to handle.)  In our model we neglect
acceleration (i.e. assume a steady state and diagnose velocities from a
balance of the forces ) and sea surface tilt because they are small
relative to the other terms.  Sea surface tilt is also a little hard to
define in a rigid lid ocean model.The cavitating fluid approximation allows
the internal ice forces,  FF, to be expressed as

where P is the internal ice pressure.  (The simplest case is free drift
where P is zero everywhere i.e. internal ice forces are neglected and the
coriolis force is balanced against the wind and water stress terms.)

In the coupled model, surface wind stress is diagnosed by boundary
layer subroutines in the atmosphere model and passed to the ocean model as
coupling fields.  In ocean only runs it is provided as climatological
forcing, thus �  can be taken as given.  The water stress, �  is calculateda w,

in the model using a quadratic drag law derived by McPhee and described in
Flato and Hibler 1992. The vector stress is 

where

and C  is the water drag coefficient ( 0.0055 kg m s  ), �  is the densityw w
-2 -1

of sea water and �  is a constant water turning angle (assumed to be 25°,
or -25° in the southern hemisphere).  Because this drag coefficient depends
on the ice velocity, a double timestep is used in which drag coefficients
are calculated using ice velocities from the previous timestep.  These are
used to calculate a free drift field and correct it, and  the drag
coefficients are recalculated using these intermediate velocities.  The
velocity calculations are then repeated with the new drag coefficients to
give the final velocity field.
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(C.5)

(C.6)

(C.7)

(C.8)

The equation of motion we are solving,

can be rewritten, with terms involving u u separated out, as

where  A = C  cos �w
*

  B =  mf +  C  sin �w
*

  CC = ��  + C  cos �  UU   + C  sin �  kk××UUa w ww w ww
* *

We want first to solve this equation with P zero everywhere (although we
will solve it for arbitrary P so that the same solution can be applied on
the second half timestep where the ice pressure has been increased from
zero by application of the correction scheme).  If we resolve into 	  and

 coordinates, on a spherical Arakawa B staggered grid i.e.

  h+        h+        h+

     u>v^        u>v^        u>v^

  h+        h+        h+

       u>v^        u>v^        u>v^

   h+        h+        h+

we get

This can be rearranged to give an algebraic solution:
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(C.6)

(C.9)

(C.10)

Unfortunately this B grid formulation has an alternating grid point
instability in the correction scheme, as described in Flato and Hibler
1992, so following them we have implemented the ice model on an Arakawa C
grid with u and v components defined at separate points as shown

  h+  u>    h+  u>    h+

            v^        v^

  h+  u>    h+  u>    h+

            v^        v^

  h+        h+        h+

to eliminate the instability.  The drawback with this approach is that an
algebraic solution of the free drift equation is no longer possible,
because the u and v components are defined at separate points and so cannot
be eliminated by adding the component equations.  An iterative solution is
possible and converges relatively quickly.

Take the equation of motion

and resolve it into component equations on a spherical C grid where u is
the zonal velocity component, v is the meridional velocity component,
subscripts x and y denote coefficients valid at u and v velocity points
respectively, �  is the zonal component of forcing stress defined at u��

xx

velocity points, �   is the meridional stress component defined at v��
yy

velocity points, and i and j denote positions on the grid.

We expand this to show dependence on surrounding velocity points, assuming
that A, B, � , and ∇P are available at both u and v points by consistent
averaging/interpolation.

Separating out terms involving u  (i,j) and v  (i,j) from those involvingx y

surrounding points we get
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(C.11)

(C.12)

(C.13)

(C.14)

For clarity I will substitute

which leaves 

where R1 and R2 depend on neighbouring velocity points.  These equations
can be rearranged and combined to give

where

Although R1 and R2 depend on neighbouring velocities, if this calculation
is repeated for each point on the grid several times, starting with the
velocity field from the previous timestep, the velocity increments become
small and the solution converges.

Once this free drift solution has been obtained, we need to correct
the velocity field to allow for the internal forces in the ice - the
cavitating fluid scheme.  Free drift gives a realistic velocity field but
allows excessively thick ice to build up because there is no resistance to
convergence.The purpose of the correction scheme is to alter velocity
components so as to reduce convergence.  Rather than treat the ice as
completely incompressible, an ice strength parameterisation is used such
that the internal ice pressure is not allowed to exceed a calculated
maximum, the ice strength, in each grid box.  If this ice strength is
reached, some convergence is retained in the grid square as a crude
representation of ridging / rafting.  The ice strength is given by

where P* and C are tunable constants ( P*=27.5 kN.m-  ; C=20 ), h is the2

mean ice depth (NB this does not include snow depth at present ), and A is
the ice fraction.  Each velocity correction increases the internal ice
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(C.6)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

C.20

pressure P, but P is not allowed to exceed Pmax.

To derive the velocity corrections and pressure increments, start with
the equation of motion again.

We want corrected fields u+u’ and P+P’  ( where ’ indicates a correction
) such that P+P’ �  0 and

These corrected fields will satisfy the same equation of motion, so that

which can be simplified to give

Subtracting (C.6) from (C.16) gives a velocity correction of

so now we require an expression for the pressure correction, P’, such that
∇∇ • (uu+u’u’) = 0. Substituting gives

(This Laplacian form is the source of the checkerboard instability in the
B grid formulation.)

Hibler solves these for a spherical Arakawa C grid giving divergence

From this the pressure perturbation can be obtained from

and the corresponding velocity corrections are
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These velocity corrections, if added to the initial field, will ensure that
∇∇ • (uu+u’u’) is exactly zero.

The relaxation procedure is as follows.  The initial u field is one
that satisfies equation (C.6) ( i.e. free drift or a modified free drift
field with a non-zero pressure field ).  The entire grid is swept through
point by point several times applying velocity corrections and increasing
the internal ice pressure by corresponding increments, with the current
value equal to the initial value plus all subsequent corrections.  This is
repeated until the largest correction is smaller than a specified
tolerance, with several sweeps of the rows close to the poles required on
each pass through the grid to ensure quick convergence on the spherical
grid.

At a given grid cell, first the divergence is calculated using the
most recent velocity components.  If this is greater than zero, and the
pressure is zero, nothing further needs to be done.  If the divergence is
negative, the velocity and pressure fields are corrected, unless the new
pressure field would exceed Pmax, the ice strength, in which case the
pressure correction P’=Pmax-P is applied, with corresponding velocity
corrections.  This maintains some convergence in the grid square but
ensures that P does not exceed Pmax.  If the divergence is positive and the
pressure is finite, either P’ as calculated above, or P’ = -P is applied,
whichever is smaller.  This ensures either zero divergence and finite
pressure, or zero pressure and finite divergence.

Because the acceleration term has been dropped from the equation of
motion, a timestep does not appear explicitly in the equation of motion
(although it does appear in the advection equations), however the non-
linear water drag terms ( which appear in the A and B coefficients ) are
treated by Hibler through a two-step timestepping scheme.  We use the same
procedure, starting with an initial velocity field u  from the previouskk

timestep, and an initial pressure field which is zero everywhere.  From the
initial velocity field we calculate drag coefficients and thus the A aand
B coefficients and forcing � .  These are then used to calculate free drift
velocities on the C grid, with the initial velocity field entered as a
‘first guess’ for the relaxation scheme.  This free drift field then has
the cavitating fluid correction scheme applied to it using the same A
coefficients until the largest velocity correction on a sweep through the
grid is smaller than the specified tolerance, and the first half timestep
is complete.  At this point the drag coefficients, A and B coefficients,
and forcing � , are recalculated using the intermediate velocities.  The
free drift calculations are repeated, using the intermediate velocity and
pressure fields as the first guess, and these new drag coefficients.
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Finally the cavitating fluid corrections are applied for the second time
to give the final velocity and pressure fields.  This timestepping scheme
is shown in compact form in Flato and Hibler 1992, equations 15a and
15b. Since the ocean and atmosphere model fields are defined on the Arakawa
B staggered grid, and ice model fields on the C grid, interpolations are
required between mass and velocity points, and also between B and C grids,
at different stages in the timestepping.  In order to do this as
consistently as possible and to minimise both interpolations and errors,
I decided to follow the atmospheric boundary layer routines in treating
drag coefficients etc.  First velocities ( i.e. currents, ice velocities
) are interpolated to mass points, and the velocity magnitudes and hence
drag coefficients are calculated. The drag coefficient C * is used tow

calculate A  and  A   (=  C * cos 
 ) and B  and B  (= -mf+C * cos 
�
 ) for bothx y w x y w

u and v velocity points on the C grid.

Once a velocity field has been obtained, it is necessary to advect ice
depth, ice fraction and snow depth.  Simple upstream differencing is used
and the C grid formulation makes this particularly straightforward with no
velocity interpolations required.  The advection scheme is detailled in
Section 4 of the main section of the documentation, as it is shared with
the simple ice dynamics scheme. The advective change in ice depth, part of
the continuity equation, are given by

where h is the mean ice depth. Similar equations hold for ice
concentration, A, and grid box mean snow depth (A.h ).  And that completess

the cavitating fluid dynamic sea ice model formulation. 
 

The ocean model requires the basal stress from the ice portion of grid
boxes as input to its dynamic calculations in CLINIC.  With all other ice
model options, the wind stress is added to the ocean unaltered even if sea
ice is present.  In coupled and ocean-only runs including cavitating fluid
dynamics,  the wind stress components are weighted by the leads fraction
(interpolated to the UV grid) before being added to the ocean, and by the
ice fraction (similarly interpolated) before being passed to the ice
dynamics subroutines. This is done in subroutine INIT_OCEAN_ICE. In coupled
runs, it may be more consistent to do this  in the atmospheric boundary
layer routines, but as this would mean two extra coupling fields for
probably negligible benefit it has not been implemented. 

Wind mixing energy, which is a field on the tracer grid required as
input to the mixed layer model, should also have different treatment under
sea ice in the cavitating fluid model.  Previously this field was zeroed
under sea ice, leading to very shallow mixed layers, but in the present
‘frozen’ coupled model a wind mixing energy based on leads drag
coefficients only, and weighted by the leads fraction, is diagnosed in the
boundary layer model and passed to the ocean as a coupling field.  After
consulting Roderick Smith (CR), I intended to treat WME in the following
way in coupled experiments.  The ‘leads’ WME, as it is calculated at
present in the frozen climate model, was added to a component due to keel
stirring etc. under sea ice.  The ice contribution to the mixing energy can
be derived from the ice-ocean stress  ��  , which is given by equation C.3.w

The magnitude of the ice-ocean stress is given by

and the energy available for mixing is
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which can be rearranged to give

When this mixing energy was calculated from the ice-ocean stress and used
by the mixed layer model, it gave unrealistically deep mixed layers under
ice. At present (4.0) this part of the model code is inactive, and further
work on implementation may be appropriate if the cavitating fluid scheme
is developed further.


