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A. Introduction

The ocean model and this documentation are based on the version distributed by GFDL (Cox, 1984).  The
structure of the ocean model itself has been changed to allow it to be coupled to the atmosphere model and
to make it more efficient on computers with moderate vector length and without virtual memory.

More than two decades have passed since the first primitive equation, 3-dimensional numerical ocean model
was coded for use in studying the most basic aspects of large-scale, baroclinic ocean circulation (Bryan and
Cox, 1967).  A description of the physics and numerics involved was published by Bryan (1969).  In this
model the prediction of currents is carried out using the Navier-Stokes equations with three basic
assumptions.  The Boussinesq approximation is adopted, in which density differences are neglected except in
the buoyancy term.  The hydrostatic assumption is made in which local acceleration and other terms of equal
order are eliminated from the equation of vertical motion.  And, lastly, closure is attained by adopting the
turbulent viscosity hypothesis in which stresses exerted by scales of motion too small to be resolved by the
grid are represented as an enhanced molecular mixing.  The temperature and salinity are calculated using
conservation equations, again utilizing a turbulent mixing hypothesis for closure.  The equations are linked
by a simplified equation of state.

Several techniques are used for the purpose of computation efficiency.  High speed, external gravity waves
are eliminated by the ’rigid-lid’ approximation, and a LaPlacian equation is solved for the non-divergent,
vertically averaged flow. The next most serious time-step limitation, the half pendulum day constraint
associated with inertia-gravity waves, is overcome by a semi-implicit treatment of the Coriolis term.

Considerable improvement was made to the structure of the FORTRAN code of this model by Semtner
(1974) who, at the same time, added various features to the mathematical formulation, chief of which was
the use of ’hole relaxation’ (Takano, 1974) in the solution of the external mode for a model with islands.
This version of the model has been adopted by many investigators and has seen considerable use for a
number of years in the ocean modelling work at GFDL. During this time, as vector processing machines
became more demanding of suitable FORTRAN structure, significant changes have been made to the code
for efficiency purposes.  It has also been generalised in several ways, among which is the incorporation of
variable grid spacing in the horizontal, and an arbitrary number of trace prognostic variables.  The relaxation
code for the solution of the external mode has been redesigned, and a better technique for establishing the
initial guess has reduced the scans-to-convergence considerably.

While many alterations have been made to the original Semtner code, anyone who is familiar with that code
will note that the basic structure remains the same.  It is the goal to provide improvements while retaining as
much continuity with the former version as possible.

The main text of this paper describes the version of the ocean model as distributed by GFDL.  A number of
enhancements have been made to the model.  These are described in separate papers or as new annexes to
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(1)

(2)

(3)

(4)

(5)

(6)

B. Continuous Equations of the Model

The basic equations of the model as described above are written here in continuous form.   Let

where     is latitude,  is longitude and a is the radius of the earth.  An advection operator,

is adopted in which    is any scalar quantity.  The equations of motion are then

where     is taken to be unity.   The local pressure, p, is given by the hydrostatic relation,

where  is the pressure at the surface of the ocean.  The continuity equation is
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7)

(8)

(9)

(10)

(11)

(12)

The conservation equation,

applies to any ’tracer’ type of quantity carried in the model.  These include the active tracers, potential
temperature and salinity (active in the sense that they appear in the equation of state), and any passive tracers
such as Carbon 14 or Tritium.  The equation of state is

where  is potential temperature, S is salinity and the depth dependence arises from compression effects.

In the present model, (8) is represented by a polynomial fit to the Knudsen formula (Bryan and Cox, 1972) or
by the newer UNESCO (1981) equation of state, see technical documentation.  Let

Then the effects of turbulent mixing are

where  is the mixing coefficient corresponding to

 

a
M momentum

T tracer

b
V vertical

H horizontal
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(13)

(14)

at z=0 (15)

at z = -H (16)

Vertical mixing is known to be a rather complex function of vertical stability in nature.  Since this process is
still not well understood, we have adopted a simple, uniform mixing under statically stable conditions, and an

infinite mixing under statically unstable conditions.  If  is the local vertical density gradient (ignoring

compression effects), then

(Note:  stability dependent mixing is described in a companion paper)

At lateral walls, the boundary conditions are

where the n subscript indicates a local derivative with respect to the co-ordinate normal to the wall.  At the
surface,

The ’rigid-lid’ assumption of zero vertical motion at the surface filters out high speed external gravity waves

which would otherwise seriously limit the length of the time step of the numerical integration.  The quantities 

are the zonal and meridional components of the surface stress, and  is a flux through the surface, of the

particular tracer involved.   At the bottom,

where  and  are bottom stresses.  (Section E explains how the bottom boundary conditions are

Page 5 of 30



(17)

(18)

(19)

(20)

(21)

(22)

implemented in the model).

Combining (3) and (4) with (5),

where

Let us define

where

Then, since  is not a function of depth,

Since all terms on the right of (18) and (19) are known, (22) may be solved for the internal modes of
momentum.  Under the rigid-lid boundary condition, the external mode of momentum may be represented by

a volume transport stream function ,
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(23)

(24)

(25)

(26)

(27)

This is shown by integrating (6) vertically, substituting (23) and noting that the boundary conditions (15) and

(16) on  are satisfied.  A prognostic equation for  may be obtained by averaging (17) vertically, and

eliminating terms in  by applying the curl operator,

Substituting (23),

The boundary condition on  at lateral walls, corresponding to (14) is

This condition is satisfied by setting  constant over each unconnected land mass comprising the ocean

boundary.  In the case of an enclosed basin with no islands,  may be arbitrarily set to zero over the
boundary forming land mass.  If, in addition, islands are present, the associated constant for each island reflects
the net flow around the island and must therefore be predicted by the governing equations.  The method used

is ’hole relaxation’ in which the line integral of the quantity , taken around the island, is required to

vanish.   Averaging (17) vertically, integrating around the coast of the island and setting the contribution due

to  to zero, the predictive equation,

is obtained.  Applying the Stokes theorem yields a more useful form,
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(28)

Note that (28) is simply an area integral of (25), taken over the island.
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Figure 1 Layout of variables on the model grid.
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(29)

(30)

(31)

C. Finite Difference Formulation

The initial value problem described in Section B by prognostic equations (7), (22), (25), associated diagnostic
equations (6), (8), (23), and boundary conditions (14), (15), (16), (26), (28) may be solved numerically using
finite difference techniques.  Rewriting the continuous equations in finite difference form may be done in any
of several different ways.   However, it is of critical importance that certain integral constraints be maintained
during the solution of the initial value problem, and these constraints dictate the particular finite difference
formulation which is used.  Arakawa (1966) did much of the early work along these lines and Bryan (1969)
generalized it using the arguments summarized below.

Let the basin under consideration be divided into cells with interfaces lying along common planes of constant
latitude, longitude, and depth.  The first constraint which must be satisfied is that of mass conservation within

each cell. If each cell interface is designated by the index b, with the area of interface b equal to  and the

velocity normal to interface b into the cell equal to , then

Secondly, the basin wide integral, I’ of any conserved quantity q, must remain unchanged by the advective

process.  This assures conservation of momentum, heat, salt and other tracer quantities.  If  is the value

of q on interface b and there are a total of N cells in the (closed) basin, then

That the above integral vanishes in general can be seen by considering that each term involving interior
interfaces appears twice, once with a positive sign and once with a negative sign.   The remaining, uncancelled

terms at the boundaries are zero since  is zero there.

The third constraint is that the volume integral, I" of the square of q is unchanged by advection.  This assures

conservation of kinetic energy and the variance of temperature, salinity and other tracer quantities.  If  is

the average of q within the cell, then
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(32)

(33)

(34)

(35)

The above integral is not zero for all definitions of , although it has been shown (Arakawa, 1966) that it

can be made to vanish by defining

where  is the average of q in the cell sharing interface b.  The integral can be rewritten

The first term on the right vanished by (29) and the second term vanishes by the same cancelling process which
occurs in (30).

The fourth constraint which must be met by the finite difference equations is that kinetic energy gained (lost)
through the pressure term of the momentum equations must be balanced by an equal loss (gain) of potential
energy through th advection terms of the conservation equation for density itself, but only for the temperature
and salinity separately.  Therefore, when the equation of state, (8) is nonlinear, the following balance does not
strictly hold.  Multiplying the pressure terms by u and v, the density advection by gz, and integrating, we get
in the continuous form,

Finally, since an insulating boundary condition exists for the tracer quantities, T, at all boundaries of the basin
except the surface, the constraint,

must be met, where the integral on the right is taken over the surface area of the basin.

Let the cells described earlier be indexed such that the eastward position is given by i, the northward position

by j and the downward position by k.  The dimensions of each cell will be denoted by ,  and

.   The arrangement of variables within the cells corresponds to the ’B-grid’ configuration of Arakawa

and Lamb (1977).  Horizontally, the tracer quantities, T are situated in the centres of the cells with the horizontal
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(36)

(37)

velocity components placed at the corners as shown in Fig. 1a.  The two-dimensional quantity,  is also

positioned at the horizontal centre of the cells.  The vertical arrangement is illustrated in Fig. 1b.   T, u and v
are located halfway through the vertical dimension of the cell.  Two sets of vertical velocities are calculated.

The quantity  is used for computing T and  is used for computing u and v.   In each case w is

calculated at the horizontal interface of the cell, in vertical line with its associated prognostic variable, T, u, v.

It will be convenient to define the following finite difference operators:

In the following discussion, the indices i,j will be used in some equations to denote the position of T and in other
equations to denote the position of u,v. Whether i and j are full integers (T) or half integers (u,v) will be implied
by the variable they index.   Further, if indices are omitted, the values i,j,k are understood.

Based upon the previous description of the placement of variables within the cells, it is possible to define an
alternate cell where the tracer quantities appear at the corners.   The horizontal dimensions of such as cell would
be

where, as stated above, the index of the term on the left is implied to be a half integer and that on the right, a
full integer.   Further, cells can be defined in which T, u and v appear at vertical interfaces.  Their vertical
dimension is

where, again, the index on the left is implied to be a half integer.  These cells are used later in forming volume
integrals of quantities appearing at the horizontal or vertical velocity points.

From Fig. 1b it may be seen that the total depth of the basin , defined at the corner points of the original

cells is
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(38)

(39)

(40)

(41)

(42)

(43)

or the minimum of the depths , of the four surrounding vertical columns of cells.  We can now define

a finite difference equivalent of the vertical averaging operator (21),

Rewriting (20), we get

where (23) is rewritten

We will first develop the finite difference equations for the internal modes, followed by the equations for 

and then the equations for the tracers, T.

Using centered differencing in time, (22) is written

The Coriolis term is handled semi-implicitly in time so that the time-step need not be limited to a value small
enough to resolve interial oscillations. Equations (18) and (19) may be written
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(44)

(45)

(46)

(47)

(48)

(49)

(50)

where N+1 indicates the time step being predicted and

It may be shown that, for a value of , the constraint of resolving internal oscillations in time is

removed.   This is particularly useful in coarse resolution studies where long timesteps are otherwise possible.

Before defining the advective operator , we construct two auxiliary quantities

Then,

and  is defined by

along with the boundary condition
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(51)

(52)

(53)

(54)

(55)

Constraints (29) and (30) are satisfied automatically by (50) and constraint (31) is satisfied by expressing the

advected quantity,  at the various interfaces, as the average of the neighbouring values as in (32).  The use

of the special quantities (47) and (48) is needed so that the vertical velocity at the bottom of the basin is of the
form of boundary condition (16).

The frictional terms are lagged one timestep for purposes of numerical stability (Richtmyer and Morton, 1967),

where

The finite difference form of (25) for the stream function,  is also complicated somewhat by the

semi-implicit treatment of the Coriolis term.  Bringing the implicit component to the left side.

Boundary condition (26) is satisfied by setting  constant along the two rows of cells straddling the basin

boundary.   In the case of singly connected basin, this value may be arbitrarily set to zero.  For an island, the
value must be calculated using a finite difference form of (28).  This simply amounts to taking an area weighted

sum of (55) over all cells for which  will take the island value.

The solution of the elliptic problem above is achieved by the method of successive over-relaxation.  A guess is
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(56)

(57)

(58)

(60)

made for all cells variant in , including the island constants, a residual is computed based on (55) and the

stated boundary conditions, and a new guess is established from the residual.  This process is iterated until the

change in  between guesses is smaller than an arbitrary constant.  Convergence is assured as long as the

matrix of coefficients of  is diagonally dominant.   Large gradients of bottom depth may destroy such
dominance through the implicit Coriolis stem of (55).  However, this is not a problem for most bottom
configurations used.

The predictive equation for the tracer quantities T may be written in finite difference form,

where

and  is defined by

along with the boundary condition

Constraints (29), (30) and (31) are satisfied by the same arguments used for the advective operator on

momentum.   The additional weighting by  and  under the bar operators is needed to satisfy

constraint (34) (see section D).

The diffusive operator may be written

Convective mixing, indicated by  in (12), is accomplished in the model by testing the vertical static

stability of each column of cells at the end of each timestep, volume averaging the T values for all cells which
are found to be statically unstable, and resetting each cell to the average.   This process simulates a vertical
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mixing with infinite mixing coefficient.

Two optional forms of time differencing are provided in the model.  One solves the vertical diffusion equation
using in implicit technique and is described in a separate document.  The other solves the joint advection -
diffusion equation in the vertical mode and an implicit technique; this is described in Section H.
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(61)

(62)

(63)

(64)

D. Integral constraints

The importance of maintaining certain constraints on the volume integrals of kinetic and potential energy has
been mentioned earlier.  It is the purpose of this section to show formally that such constraints are satisfied by
the particular set of finite difference equations presented here.   The approach follows closely that of Bryan
(1969).

If we denote the total kinetic energy (K.E.) by K, then

where

is the K.E. of the external mode and

is the K.E. of the internal modes.   Let { } designate the volume integral over a closed ocean basin.  The left

side of (25), when multiplied by , integrated over the entire volume and rearranged becomes

The first two terms vanish due to boundary condition (26) on , and the last two are the time derivative of

the right side of (62) with (23) substituted. Therefore,

by (25) with u’ and v’ given by (18) and (19).  Furthermore, the individual rates of change by K.E. due to a
particular term on the right of (18) and (19) may be obtained by substituting that terms for u’ and v’ in (64).

Multiplying (22) by  and integrating,

Page 18 of 30



(65)

(66)

(67)

(68)

(69)

(70)

The second term on the right vanishes by definition of .   Again, the contributions of the individual terms

in (18) and (19) are obtained by substituting them in (65) for u’, v’.

To obtain an expression for the rate of change of total K.E., it will be necessary to combine the finite difference
equivalents of (64) and (65).   For this purpose it will be helpful to establish several identities involving the finite
difference operators.  It is easy to verify that

and

Combining (66) and (67) and substituting  for ,

The finite difference equivalent of the right side of (64), corresponding to (55) is

Since the integrand is constant in k, the vertical summation cancels with H. Using (68),
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(71)

(72)

(73)

(74)

(75)

(76)

The last four terms on the right vanish by boundary condition (26) on . Substituting (41),

The finite difference equivalent of the right side of (65), corresponding to (43) and (44) is

Note that, since the integrand is defined at u,v points, this integral is taken on the alternate cells, with horizontal
dimensions described by (36).  However, it is easy to show that, for a closed basin, an equivalent expression is

Combining (71) and (73) we get an expression for the rate of change of total K.E.,

where total u and v are defined by (40).   Again, the overbar is optional, making no difference in the value of
the integral.

As stated earlier, the rates of change of K.E. due to individual terms of (45) and (46) may be evaluated by
substituting them into (74) for G  and G .  For advection,u v

This integral may be rewritten

which is equivalent in form to (31).  I  has been shown to vanish when u , v  are defined as in (32).  This1 b b

condition is met by the advective operator (49).  It is therefore established that no change in total K.E. occurs
through advection.
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(77)

(78)

(79)

(80)

(81)

(82)

Constraint (34) states that total (kinetic plus potential) energy must be conserved through the pressure term of
(45) and (46) and the advection term of (56).    Let

then the rate of change of K.E. by the pressure term is

Applying (68),

For a closed basin, all terms on the right vanish except for the first and fourth.  Combining them and substituting
(58),

Using (66) and (77)

The second term vanishes in the summation, and applying (66) once more with , .

where, once again, the last term vanishes in the summation.  The remainder is equivalent to
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since the two horizontal terms of (57) vanish in the summation.  The expression above is the net loss of potential
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Figure 2 The ’T’ grid is shown and
shaded points represent a column
depth of k; unshaded points
represent a depth of k+1.

Figure 3 Vertical view of grid.

E. Lower boundary condition for momentum in
the Bryan family of ocean models

Cox, in the documentation of his 1984 version of the
ocean model, states that the vertical velocity at the ocean

floor should be .  It is not obvious how this is

applied in the model, nor is it clear how the vertical
advection equation is closed.  This section aims to shed
some light on what really happens.

The explanation hinges on a rather complicated diagram of
the lower portion of the ocean model.   For simplicity it
has been assumed that there is a one grid box step in the
zonal direction which extends north and south (fig. 2).

Looking at the grid ’side on’, and looking at fewer points,
we see the full, complicated, picture (fig. 3).  It is
immediately obvious that the total momentum in the box
surrounding point ’B’ is zero, despite momentum flues

across CC’ and DD’.  The magnitude of the vertical velocity across CC’ is given implicitly by the continuity

equation. This is derived by considering the mass flux across DD’ and spreading this across

the boundary CC’ .

Thus 

which recovers the expression .  Note that

this conserves mass but not momentum.

The momentum flux across DD’ is  and

across CC’ is .

The ratio of the two is thus .

Momentum is thus not conserved: the boundary condition
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represents a source or sink of momentum.

When considering the vertical advection equation, the boundary condition =0 is consistent with this

analysis, but does not conserve momentum (needing a boundary layer).
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Figure 4
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Figure 5 Grid points used in the calculation of stream function.

F. Island boxes

In the standard version of the model released by GFDL in 1984,  the stream function field is calculated using
an iterative technique.  One of the processes involved is to calculate a line integral around each island.  (The
Unified Model code has generalised the earlier version by allowing each island to consist of several boxes).

The streamfunction is calculated on a T grid.

The number of levels at 
u(i,j)=min of levels at
[(T(i,j),T(i,jk+1),T(i+1,j),T(i+1,u+1)].
An index array is set up to show if a
point is land, sea, or coastal:

ISMASK (i,j)
= O if u(i,j), u(i,j-1),u(i-1,j),u(i-1,j-1)
are all sea points

= 1 if 1, 2 or 3 of u(i,j), u(i,j-1),
u(i-1,j) are all land points

= 2 if u(i,j), u(i,j-1), u(i-1,j), u(i-1,j-1)
are all land points

Gridpoints used when calculating the
stream function for a point are shown
in fig 5.  The coefficients CFN, CFW,
CFS, CFE are calculated using
differences between the grid points at
either end of the arrows in fig. 6.
PTD is the change in the
streamfunction over a timestep.

To calculate the line integral of the
streamfunction around an island,
residuals are calculated at all points
with ISMASK=1 (ie at perimeter
points of the island) that are within the
island box.

Therefore two criteria must be satisfied:

1. The island box must include all points with ISMASK=1 that are associated with the island.

2. The island box must not include any points with ISMASK=1 that are not associated with the island.

There are two further rules which must be followed in defining island boxes:

1. The island box must be completely outside the island.
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Figure 7  Example choice of island boxes.

Figure 6 Illustration of terms used in describing island box creation.

2. There must be at least one
sea point to the west, to the south and
to the southwest of all box boundary
points.

This is illustrated in figure 6.

NB (a) If there is only one
grid point separating two
land masses in the tracer
topography, then in the
streamfunction topography
the two land masses are
connected.

(b) It may be necessary
to split the island box into
more than one segment, each
segment satisfying condition
(1) above and a slightly
modified condition (2).

There must be at least one
sea point or another island
box segment from the same
island to the set to the south
and to the southwest of all
the island segment boundary
points.

Also two island box segments
from the same island must
not overlap.  Figure 7
illustrates a valid choice of
island boxes.
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G. Polynomial approximation to the Knudsen formula

A technique is described in Bryan and Cox (1972) whereby, for each level of the model individually, a 9-term,
3rd order polynomial in temperature and salinity may be constructed to serve as the equation of state, which
closely approximates the Knudsen formula for the density of seawater.  A considerable decrease in computational
effort is realized over using the formula directly.    The bounds of T and LS over which the polynomial is to
be fitted must be specified  for each 250 meter depth span of the ocean.  It is currently set at a reasonably
general distribution but may be altered if unusual T or S values are expected, such as in a paleo-oceanographic

Page 28 of 30



H. Miscellaneous changes from the original GFDL code

H.1 Robert time filter

The leapfrog scheme can produce ’time splitting’, where solutions for even and odd timesteps drift apart.  The
Robert time fitter is used to smooth the fields in time using the formula

where the subscript "provisional" refers to the value produced by the GFDL standard code at the timestep given
by the superscript, and ’final’ refers to the time-smoothed value.

H.2 Single time-level dumps

To allow a single time level to be stored in the dumps, the ocean model takes a forward timestep occasionally.
This should be done frequently enough that a dump output step is associated with a forward timestep.  The
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