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1. INTRODUCTION 

This note describes the equations and finite difference formulation of the unified forecast/climate

model. The primitive equations are used in the  form of White and Bromley (1988), which include

certain terms important for  treating very large scale flows. The finite difference scheme  seeks to

combine the accuracy and efficiency of the scheme of Bell and Dickinson (1987)  with the conservation

properties required for long-term climate integrations.  It is a  split-explicit scheme on the Arakawa ‘B’

grid. The Heun time-step is  used for advection. Either a second or a fourth order accurate version of

the  scheme in space can be used. Hybrid vertical coordinates are used, as  formulated by Simmons

and Str
�
fing (1981). Mass-weighted linear quantities are  conserved, and the mass-weighted second

moments of advected quantities are  conserved under non-divergent advection using the second order

accurate  version of the scheme. 

To allow use of the model in a pressure coordinate version for middle atmosphere studies,

options are included to omit some terms from the equations. 

2. THE FORECAST EQUATIONS 

The equations set out and justified by White and Bromley (1988) are used.  The choice of extra

terms to be included is governed by the need for an  angular momentum principle and for energy

conservation. The notation is that  defined in Unified Model Documentation Paper no.5. All quantities

are assumed  to be in SI units. Define a vertical coordinate ,

where and , as in Simmons and Str
�
fing (1981). The lower

boundary of the  model is always treated as a material surface with . Use spherical polar

coordinates , which for global models will be based on the Earth’s axis  of rotation. In order

that the same model can be used for limited areas, the  equations are written for a general position of

the coordinate pole. are used for the actual longitude and latitude, and are

the actual  longitude and latitude of the coordinate pole. at the pole is 0. 

     The conversion between wind components in actual latitude and longitude and

those, , relative to the coordinate pole is given by 
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(1) 

or 

(2) 

where 

(3) 

These relations only appear in the equations through the Coriolis terms. 

Write 

(4)

The equations are then   

(5)
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(6)

(7)

(8)

(9)

     The quantities are source terms, and also include any diffusion required for

computational reasons. The thermodynamic variables and are given by: 

(10) 

(11)

     The vertical boundary conditions are: 
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at (12)

These boundary conditions are used whether or not the model is integrated over the full depth of the

atmosphere. 

     Integrating (9) in the vertical from to gives: 

(13) 

     Integrating (9) from to gives: 

(14) 

     The hydrostatic relation is given by: 

(15) 

where and is the virtual potential temperature which is defined by the

standard formula , where is the ratio of molecular weights of water and dry

air. The virtual temperature is similarly defined. The basic state temperature and potential

temperature are functions of pressure only, taken from the standard atmosphere defined in

Appendix 2. Equation (15) is integrated from to , with boundary condition at

. is either the specified topographic height, or the specified height of a material surface
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within the atmosphere which will be acting as a lower boundary for the model. In the latter case, the

specified height will normally be derived from that of a constant pressure surface. 

     The approximate vertical velocity is defined as 

(16) 

The pseudo-radius is defined as 

(17) 

where is the mean radius of the earth at the reference pressure  pa

The quantity æ is defined by 

(18) 

3. THE INTEGRATION SCHEME 

     The variables are held on the Arakawa ‘B’ grid as in Bell and Dickinson (1987). The variables

and è are held at levels , where is the vertical grid-length index, while is

held at the intermediate levels The lower boundary is at and the upper boundary at

. The pressure is defined at intermediate levels by 
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(19) 

where and are specified constants. Swinbank (1989) has proposed a 

method of choosing these constants for a 20 level model. Thus 

(20)

          and 

(21) 

Note that this definition makes negative, since increases with physical height. The pressure

at full levels, where required, is defined as 

(22) 

where are chosen so that

when . This  gives a value approximately midway in pressure. Note that in the middle

atmosphere version of the model all are zero.      A split explicit integration scheme is used,

similar to that in Bell and Dickinson (1987). The solution procedure is split into two parts, called the

‘adjustment’ and ‘advection’ steps. The adjustment timestep is written as , the advection timestep

as . In the former, the pressure, temperature, and wind fields are updated using the pressure

gradient and the main part of the Coriolis terms, and the vertical advection of potential temperature.

Only the final updated values of surface pressure and horizontal wind are used in the next step. The

average horizontal wind from the adjustment  step is used to define the horizontal advection in the

advection step, and, via the continuity 

equation, the vertical advection. This procedure is needed to ensure conservation. All advection

increments are then calculated in the advection step, together with the horizontal diffusion, divergence

damping, and the remainder of the Coriolis terms. In the standard configuration of the unified model,

it is common for the winds to be much stronger at the top level than 



7

the remaining levels. An option is therefore included to halve the timestep at the top level. It is not

possible to enforce conservation with respect to time integration when this is done. 

     The standard finite difference notation 

is used. 

3.1 The adjustment step 

     This uses a ‘forward-backward’ scheme in which a forward step is used for the and

equations, and the new values of these variables are then used in the and equations. The

‘forward’ part of the integration scheme is: 

(23)

(24) 

where 
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(25)

and is the Coriolis parameter . The small Coriolis terms associated with the vertical

velocity will be  added in the advection step. As in Bell and Dickinson (1987), equations (23) and (24)

can be arranged to allow explicit integration. Write 

     Then eliminating from equations (23) and (24) yields 

and equation (23) is used to give . 

The hydrostatic equation is approximated by 

(26) 

The special form of the last term is chosen to ensure angular momentum conservation. 

     The ‘backward’ part of the integration scheme is given by 
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(27)

(This update is not performed in the middle atmosphere version). 

 (28) 

where is a basic state profile of . Note that it is not the same as the basic state

used to calculate the pseudo-radius in (15). has to be chosen to be more statically stable than any

profile actually present, as when a basic state is extracted for a semi-implicit integration scheme. 

(29) 

The first term on the right hand side is omitted from the middle atmosphere version. 

(30) 

     In order to ensure that and are conserved under advection, it is necessary that all advection

is done by a three-dimensional velocity  field which satisfies the continuity equation. The average fields

of and over the adjustment steps must be saved for use in the advection step.

At the end of the adjustment steps, the value of is rest to its value 

at the beginning of the timestep, the update is then recalculated in the advection step. 

     A smoothing of the averaged wind fields and that are used in the

advection step may be implemented. On the final adjustment timestep, the velocity fields are smoothed
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according to 

where the binomial coefficients C , depend on the number  of adjustment timesteps. This may ben
r

interpreted as a time smoothing centered about time . The coefficient  is

chosen to be 0.05 which has been found to be optimal for time smoothing applied to other schemes.

 

3.2 Grid splitting 

     The finite difference scheme described above suffers from grid separation, since the ‘B’ grid

supports two independent solutions for gravity waves. To prevent it, a scheme described by Mesinger

(1973) and extended by Janjic (1979) can be used. A term of the form 

(31)

would be subtracted from (equation (30)) on each adjustment step, where 

(32)

This scheme was found to produce unrealistic pressure builds over the poles, particularly the south

pole, during climate integrations. The use of fourth and higher order diffusion was found to remove the

grid-splitting mode and so this is used instead. 

3.3 The advection step 
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     At the beginning of the advection step, equations (10) and (11) are used to convert and

into and . The Heun advection scheme is used. Experiments within the split-explicit

model described by Bell and Dickinson (1987) have shown that it is more stable than the Lax-Wendroff

scheme used in that model, even though it has growing eigensolutions of order .

Experiments, Marshall (1989), have shown that the scheme can be corrected to remove this instability.

In practice it is found that this correction is submerged in the diffusion required for other reasons, and

the correction is therefore not used in the model. The scheme has two steps. The advecting velocity

for both is the average value saved from the adjustment steps. Mass-weighted increments to and

have to be predicted to ensure conservation. 

     Define 

(33) 

as saved from the adjustment steps. 

Define 

(34) 

where is calculated from the finite difference formula (29) using (30) and the grid splitting

correction (31). The finite difference equations for the first advection step are then: 

(35)
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The term involving , and comes from the vertical velocity term as shown in section 4.2.

The contributions to this term at and are zero as the vertical velocity at these

levels are zero. This term is refered to in the code as BRSP since no meaningful name is apparent.

(36)

(37) 
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(38) 

     

     Note that in the scheme of Bell and Dickinson (1987), higher order accuracy can be achieved by

only modifying the second advection step. In the Heun scheme, it is necessary to use the same finite

difference approximation in both steps, or else there is an instability. The

value in equations (35) to (38) gives fourth order accuracy, but will increase the 

squared amplification rate of the growing solution from to where is the

Courant number and . This will reduce the maximum timestep that can safely be used.

A fixed value must be used for for each line of latitude in the differencing and for each line of

longitude in the differencing to allow conservation. Therefore set 
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where is an input basic value. 

          over a line of latitude or longitude as appropriate. If is given as zero

then the code does not calculate or the terms in the advection equation associated with

reducing the execution time by about 30%. The minimum permitted value is zero giving second

order accurate space advection. is calculated from 

(39)

     The second advection step can be written:

(40)

where for simplicity we have included all the terms in (35) in the operator, with the

equation being written similarly but without the last thermodynamic term.. The equation for  is

given below. The equations for and are 

(41)
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(42)

with all the terms again included in the operator. The approximate mass-weighted vertical 

(43)

where 

(44) 

with u=(u,v) so that 

(45) 

(46) 

Since the terms involving and are only small correction terms, the more elaborate

approximation to that would be needed in the thermodynamic equation if had been used as

the model variable is not necessary. 

     The form of equations (40) to (42) ensure conservation under time differencing. 

     When the option to halve the timestep at the top level is invoked, the full advection calculation is

carried out as above with the terms due to horizontal advection multiplied by  and the term

involving also multiplied by . The whole calculation is then repeated for the top level only
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with the vertical advective fluxes set to zero, and the timestep still set to . 

3.4 Diffusion and divergence damping 

     Experience with high resolution limited area models suggests that divergence damping will be

needed in forecast as well as assimilation mode for gridlengths below 100 km. The vertical diffusion

will also need to be reassessed, this is not covered in this note. 

     A conservative variable order diffusion scheme is used. The scheme for diffusing a variable

can be written as: 

(47)

where for example if , and  

where 

a n d

(48) 

The operator is a conservative second order filter and the diffusion scheme implemented is

therefore a conservative order filter so for the scheme is sixth order. The choice of which

order of diffusion scheme is left to the user and is likely to be resolution dependent. 

and are diffused with the same order and coefficent , both of which can be chosen differently

for every level. A different order and coefficient can be used for the diffusion of total water which is

inherently a rougher field than the other quantities. The filter removes the same fraction of the shortest

resolvable scale at all points of the grid, allowing for the variable resolution. The stability criterion for

this scheme is as follows ; 
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For the diffusion of and it is necessary to calculate at the poles. This is done by

calculating the -direction terms in only as the -direction term is zero. These terms are

calculated for each meridian and then averaged to give a polar value of . For and

diffusion is evaluated at all points, this involves cross-polar derivatives for the polarmost points. The

diffusion acts therefore to remove any gradient in the zonal mean values of the fields between the pole

and the surrounding row. 

     The divergence at level is defined by equation (30) and is calculated using .

Increments 

and

(49) 

are added to and before the advection calculation, where is the divergence damping

coefficient, which can be set separately for each model 

level. 

3.5 Fourier Filtering 

     As in Bell and Dickinson (1987), Fourier filtering is used at high latitudes in the global versions of

the model to avoid the need for a very short timestep. The need for filtering in limited area versions of

the model is avoided by appropriate choice of the coordinate pole, so that no part of the area lies at

a coordinate latitude greater than 45  . With any resolution the timestep is chosen so as to minimise0

the filtering area without introducing too many timesteps per day. In line with other models the filtering

area is constrained to go no further than 50   with a maximum wind speed of 100ms    and hence a0 -1

10 minute timestep is required for 288 points on a latitude circle. It is also necessary to ensure that

global conservation properties are not affected by the filtering. The fields filtered are mass-weighted

velocity fields during adjustment and after diffusion steps, and the

mass-weighted increments to and due to horizontal advection. Filtering this form of

mass-weighted velocity fields before the update to together with filtering (31) removes the need
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to filter and  increments after the adjustment steps, so that the conservation proofs of section

4 do not have to consider the effect of filtering. The global means of

mass-weighted and are therefore not affected by filtering. This strategy also avoids

the problem of filtering fields which vary rapidly along a model coordinate surface and preserves the

angular momentum principle. 

     The method of filtering is Fourier damping. This approach is used as fourier chopping was found

to interact badly with the model physics leading to  problems with noise and "bulls-eyes" at high

latitudes. A separate filtering latitude for each hemisphere is calculated. On each pressure row the

maximum zonal wind speed at any level on the two adjacent wind rows is calculated and filtering

is then performed for each wave number that satisfies 

(50) 

For simplicity we set for this test, hence 

where is the phase speed of the fastest moving gravity wave. represents both the 2-D nature

of the grid, which is ignored by using just in the CFL calculation, and a user supplied safety factor

to allow more filtering than the criteria implies. So we write 

where the first term represents the 2-D nature of the grid and the second is the user supplied value

currently set to .1, is not used in calculating the  adjustment criteria as the gravity wave speed is

constant. The code records the highest stable wave number for each row as well as the first row in

each hemisphere which needs filtering. The wind rows are filtered using the same wave number cut-off
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as the pressure row to poleward of them. and are the Courant numbers for advection and

adjustment respectively with unit wind speed. For the schemes set out in this paper, 

(51) 

(52)

where . This calculation is performed at intervals during the model integration and the

length of these intervals can be modified by the user, a typical time-length between calls is 6 hours.

Fourier coefficients are calculated by applying the discrete Fourier transform: 

(53) 

where is the number of points round a latitude circle and . Any coefficient

for which satisfy (50) is damped by mulitplying the fourier coefficient by

the following factor

where the maximum stable wave-number is as calculated as mentioned previously and the number of

waves on a row is simply the number of points on a row divided by two. If there are no stable

wave-numbers on a row, ie. the maximum stable wave number is zero then the fourier damping

becomes fourier chopping 

allowing only a mean value increment. The filtered field is then reconstructed using 

(54) 
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3.6 Lateral boundary conditions and the treatment of the poles 

     Values of the prognostic variables and are extracted from a global

integration at regular intervals and linearly interpolated to limited area model grid-points in a zone near

the limited area model boundary. The limited area model points in the zone are replaced by a weighted

mean of limited area values and those interpolated from the global model. It is necessary that the global

model run used to generate the boundary values starts from the same initial data as is used to provide

interpolated initial data for a limited area model forecast or assimilation.      

The values and are stored a half grid-length from the poles. These 

values are updated by adding the correct flux to each and value and then calling the polar_uv

routine. This routine calculates a mean and as well as a local cartesian

value obtained by 

 (55)

     The routine takes and at the row adjacent to the polar row as the values to work on. The

values stored at the polar row are one-third the mean of and plus the local cartesian wind on

this row. In each adjustment step the meridional fluxes are 

(56) 

which are summed around a latitude circle then averaged to form a polar value of , which is then

used to update and as in equations (27-29). The divergence damping increment to given

by (49) is averaged to give a polar increment. 

     In the advection step the fluxes of and into the area contained within a half grid length

from the pole are calculated. These fluxes are then averaged to give a polar increment. No east-west
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fluxes are calculated for the polar value. For and no advective increment is calculated for the

polarmost row. The increments for all other rows are calculated normally and 

added to the field. The polarmost values after advection are then obtained by applying the polar

boundary condition described previously. 

3.7 Recalculation of primary model variables 

Negative values of moisture are removed by summing the mass-weighted negative values in a layer

and setting them to zero. Then summing all the mass-weighted positive values and rescale them by

This is conservative, with the mass-weighting defined as , since  

In the event of the negative values in a layer outweighing the positive values, there is an option to allow

a run to continue without conservation by omitting the rescaling. 

The primary model variables are recovered from and by setting 

(57)

Call the cloud scheme described in Unified Model Documentation paper no. 29. This calculates 

(58) 
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and returns values of and cloud fraction. Finally set 

(59)

 4. CONSERVATION PROPERTIES 

 

4.1 Angular momentum conservation 

     The requirement is that the pressure gradient term can  only  change  the angular momentum

through the surface torque.  This means that we must be  able to write the approximation to the

pressure gradient term in the model which is 

(62)

in the form 

(63)

The first term in (63)  integrates to zero and the second  integrates  to  the surface torque. This

requirement determines how the terms in (62) have  to  be calculated at level m, as in Simmons and

Str
�
fing  (1981).  Cancelling  terms gives the requirement 

(64)

We now substitute for in the right  hand  side  of  (64)  to  establish  the required form of

approximation to the left hand side. Write (26) as 

(65)

Then the right hand side of (64) becomes 

(66)

which is
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(67)

The double sum in (67) can be written 

(68)

where we have used the convention that 

(69)

The second sum is now just . (67) can therefore be written as: 

(70)

Choose such that 

(71)

Then the summand in (70) becomes 

(72)

Using the definition of in terms of , (72) reduces to 

(73)
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The expression (73) is then approximated by  spatial  finite  differences  and used to approximate the

term on the left hand side of (64) in the equation  of motion. The above argument can  be  carried

through  in  finite  differences, provided that the approximation used is 

(74)

as used in equations (23) and (24). 

4.2 Conservation of first moments                      

     The requirement is that the global mass-weighted  mean  of  all  advected quantities is  conserved.

The  proof  is  written  out  only  for  meridional advection of and , since  this  covers  all  the

possible  staggerings  of variables that occur in the other cases. Combining (29), (30), (31)  and  (35)

gives the continuity equation in the form: 

(75)

where 

(76)

A simple  second  order  forward  update  of by  meridional  advection,  and advection by the

vertical motion associated with  the  meridional  motion,  is given by 
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(77)

with the extra terms needed for conservation. The update of can be written 

(78)

because of the definition of as the  average  over  the  adjustment  steps. 

Then use (21) to give 

(79) 

Equation (20) can be used to rewrite (75) as 

(80)

If we set , and apply some simple  algebra to ensure

obtaining the first term on the right-hand  side  of  the  following equation, then we can write (80) as

A simpler  and  neater  form  can  be  obtained  by  approximating as

but  this  would  be  inconsistent  with  the  way  all  other  variables  are approximated at half

levels.Taking this new form of (80) and multiplying by then adding to (77) gives 
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(81)

This reduces to 

(82)

which gives the desired conservation integral  when  multiplied  by and integrated over .

     The update of by meridional advection and advection by  the  associated part of the vertical

motion is given by   

(83)

Multiplying the modified form of by and adding gives 
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(84)

The right hand side of (84) reduces to 

(85)

This is in conservation form. 

     Now consider the fourth order terms  in (34) to (37). Conservation cannot be achieved if is a

function of , as may be  necessary  to  avoid  reducing the timestep. Suppose that is a

constant. The terms 

can be expanded as 

(86)

with symmetrical terms in . These  terms  cancel  with  contributions  from and

when is  summed  over to  give  the  required conservation. At the poles, the
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omission of the factor in  the  fluxes summed to give the polar increment is cancelled by the

omission of the  second term in (86) when incrementing the points adjacent to the pole. 

4.3 Conservation of second moments

It can be shown that the integral of the second  moment  of  any  of  the primary  variables  is  not

conserved  using  the   second   order   accurate approximation to  the  advection  terms  unless  we

take as  constant.We illustrate this by looking at conservation. To  work  through  the  analysis

multiply (80) by and add to (77) multiplied by in a similar way  to the proof of conservation

of first moments. The left hand side is then a  discrete approximation to 

However, it cannot be written as exact conservation of . The right hand side becomes 

     The terms inside the square bracket are  in  conservation  form  but  the remaining terms are not

conservative. Should it be possible  to  remove  these extra terms then the scheme  would  conserve

but  would  not  have  quadratic conservation with  the  fourth  order  terms  included  unless

the are redefined (Fisher, private communication). The resulting scheme is rather less

accurate because it uses a broader stencil of gridpoints.  If  we  remove  the dependence of the radius

of Earth on pressure then we  get  second  moment conservation. However removing this dependence

would be undesirable if we were still to keep the other small terms suggested by White and Bromley.
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4.4 Global mass and energy corrections 

     Though the total mass of  the  atmosphere  is  conserved  by  the  finite difference scheme, in very

long integrations the loss of conservation  due  to computer arithmetic may be significant. The total

mass 

(93)

is therefore computed at the start of an integration and reset to  this  value at intervals by adding a

globally uniform correction to . 

     Total energy is not conserved by the dynamical equations because  of  the presence of diffusion

terms, and further  energy  loss  results  from  Fourier filtering.  A globally uniform temperature

correction is made by  inferring  a total energy change from fluxes computed in the physics  routines.

Since  the method of calculation depends on the physics, it is documented  separately  in Unified Model

Documentation Paper no. 18. 

5. SUMMARY

This note has outlined a conservative  split-explicit  finite  difference scheme on a B grid. There

are some choices to be made. Experiments should  be conducted to see if climate integrations perform

better with  a  second  order scheme or the fourth order scheme proposed by Fisher (not coded  at

present), giving quadratic conservation, or the fourth  order  scheme  given  here  with constant v,

giving more accuracy. The scheme has  intentionally  been  written using an approximation  to  the

Lagrangian  derivative  of  momentum  in  the momentum equation, rather than using the alternative

vorticity/  energy  form. The latter form can lead to spurious sources or sinks of momentum,  though

it allows enstrophy to be conserved. Moreover, if the solutions are  not  smooth, it is more important

to treat the momentum correctly than the vorticity. 



30

REFERENCES

Barnet, J.J. and M. Corney. 1985 

Mid-atmosphere reference model derived from satellite data. Handbook  for Middle Atmospheric

Processes, vol. 16, section 2.2. 

Bell, R.S. and A. Dickinson. 1987 

The  Meteorological  Office  operational  numerical  weather   prediction system. Met. Office

Sci. Paper no. 41, HMSO. 

Browning, G.L. and H.-O. Kreiss, 1989

Comparison of Numerical Methods for the calculation of  three-dimensional turbulence. Math.

Comp., 52, pp. 369-388. 

Janjic, Z.I. 1979 

The forward-backward scheme modified to prevent  two-grid-interval  noise and its application

in å coordinate models. Contrib.  Atmos.  Phys.,  52, pp. 69-84. 

Marshall, B.L. 1989 

Experiments with the Heun advection scheme. Met O 11 Technical  note  no. 31.

Mesinger, F.  1973 

A method for construction of  second-order  accuracy  difference  schemes permitting no false

two-grid-interval wave in the height  field.  Tellus, 25, pp. 444-458. 

Simmons, A.J. and R. Str
�
fing. 1981 

An energy and  angular  momentum  conserving  finite  difference  scheme,   hybrid

coordinates, and  medium-range  weather  prediction.  ECMWF  Tech.  report no. 28. 

Swinbank, R. 1988 

The use of a hybrid vertical coordinate for the unified  forecast/climate  model. Met. O 11

Technical note no. 29. 

White, A.A. and R.A. Bromley.  1988 

A new set of dynamical equations for use in numerical weather  prediction and global climate

models. Met. O 13 Branch Memo. 

 



31

APPENDIX 1 - STANDARD CONFIGURATIONS OF THE MODEL 

1. Vertical resolution

     The Climate, Global Forecast and Limited Area Forecast use the
following set of 19 levels.
                          Level     A        B           �K+1/2 K+1/2 

                    
                          19.5      50.0       0.0          0.0005
                          18.5    1000.0       0.0          0.01
                          17.5    2000.0       0.0          0.02
                          16.5    4000.0       0.0          0.04
                          15.5    7176.0       0.003239     0.075
                          14.5   10652.1       0.018478     0.125
                          13.5   12997.5       0.045024     0.175
                          12.5   14342.7       0.081572     0.225
                          11.5   14818.3       0.126816     0.275
                          10.5   14555.1       0.179448     0.325
                           9.5   13447.6       0.250523     0.385
                           8.5   11175.3       0.348246     0.46
                           7.5    7727.9       0.472720     0.55
                           6.5    3852.2       0.611477     0.65
                           5.5     939.0       0.740609     0.75
                           4.5       0.0       0.835        0.835
                           3.5       0.0       0.905        0.905
                           2.5       0.0       0.956        0.956
                           1.5       0.0       0.994        0.994
                           0.5       0.0       1.0          1.0

Using the interpolation scheme defined following eq. (22) gives A , Bk k

values:
                              k       A           B              �k k k

                             
                             19       460.6       0.0          0.004606
                             18      1479.7       0.0          0.014797
                             17      2959.4       0.0          0.029594
                             16      5529.4       0.001560     0.056854
                             15      8861.7       0.010630     0.099247
                             14     11801.4       0.031487     0.149501
                             13     13660.1       0.063026     0.199627
                             12     14577.7       0.103925     0.249702
                             11     14688.1       0.152871     0.299752
                             10     14007.0       0.214628     0.354698
                              9     12323.5       0.298868     0.422103
                              8      9469.9       0.409823     0.504522
                              7      5809.3       0.541410     0.599503
                              6      2408.0       0.675494     0.699574
                              5       472.5       0.787503     0.792229
                              4         0.0       0.869832     0.869834
                              3         0.0       0.930417     0.930417
                              2         0.0       0.974956     0.974956
                              1         0.0       0.996999     0.996999
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The following 30 levels are used in the operational Mesoscale model.

                              Level      A        B             �k+1/2 k+1/2

                              30.5       50.0      0.000000      0.0005
                              29.5     1000.0      0.000000      0.010
                              28.5     2000.0      0.000000      0.020
                              27.5     4000.0      0.000000      0.040
                              26.5     7176.0      0.003240      0.075
                              25.5    10652.2      0.018478      0.125
                              24.5    12997.5      0.045025      0.175
                              23.5    14342.7      0.081573      0.225
                              22.5    14818.4      0.126816      0.275
                              21.5    14555.1      0.179449      0.325
                              20.5    13447.7      0.250523      0.385
                              19.5    11689.9      0.328101      0.445
                              18.5     9700.1      0.402999      0.500
                              17.5     7527.4      0.479726      0.555
                              16.5     5345.5      0.556545      0.610
                              15.5     3500.4      0.624996      0.660
                              14.5     2064.1      0.684359      0.705
                              13.5     1045.7      0.734543      0.745
                              12.5      409.0      0.775910      0.780
                              11.5       87.8      0.809122      0.810
                              10.5        0.0      0.835000      0.835
                               9.5        0.0      0.858000      0.858
                               8.5        0.0      0.880000      0.880
                               7.5        0.0      0.901000      0.901
                               6.5        0.0      0.921000      0.921
                               5.5        0.0      0.940000      0.940
                               4.5        0.0      0.957000      0.957
                               3.5        0.0      0.972000      0.972
                               2.5        0.0      0.985000      0.985
                               1.5        0.0      0.994000      0.994
                               0.5        0.0      1.000000      1.000
                            

 Using the interpolation scheme defined following eq. (22) gives A , Bk k

values

 k           A        B             �k k k

 30        460.6   0.000000      0.004606
 29       1479.7   0.000000      0.014797
 28       2959.4   0.000000      0.029594
 27       5529.4   0.001560      0.056854
 26       8861.7   0.010630      0.099247
 25      11801.4   0.031487      0.149501
 24      13660.1   0.063026      0.199627
 23      14577.7   0.103925      0.249702
 22      14688.1   0.152871      0.299752
 21      14007.0   0.214628      0.354698
 20      12576.4   0.288978      0.414742
 19      10701.9   0.365290      0.472309
 18       8620.5   0.441124      0.527329
 17       6442.6   0.517920      0.582345
 16       4427.3   0.590610      0.634883
 15       2785.0   0.654561      0.682412
 14       1556.6   0.709369      0.724934
 13        728.2   0.755170      0.762452
 12        248.7   0.792479      0.794966
 11         44.0   0.822038      0.822477
 10          0.0   0.846481      0.846481
  9          0.0   0.868983      0.868983
  8          0.0   0.890485      0.890485
  7          0.0   0.910987      0.910987
  6          0.0   0.930488      0.930488
  5          0.0   0.948491      0.948491
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  4          0.0   0.964493      0.964493
  3          0.0   0.978495      0.978495
  2          0.0   0.989498      0.989498
  1          0.0   0.996999      0.996999

The following 42 levels are used in stratosperic studies. Other levels eg:
49 or 31 are also used but not included here.

Level    A       B            �K+1/2 k+1/2

   
42.5     25.1         0.0         0.000251
41.5     31.6         0.0         0.000316
40.5     39.8         0.0         0.000398
39.5     50.1         0.0         0.000501
38.5     63.1         0.0         0.000631
37.5     79.4         0.0         0.000794
36.5    100.0         0.0         0.001000
35.5    125.9         0.0         0.001259
34.5    158.5         0.0         0.001585
33.5    199.5         0.0         0.001995
32.5    251.2         0.0         0.002512
31.5    316.2         0.0         0.003162
30.5    398.1         0.0         0.003981
29.5    501.2         0.0         0.005012
28.5    631.0         0.0         0.006310
27.5    794.3         0.0         0.007943
26.5   1000.0         0.0         0.010000
25.5   1258.9         0.0         0.012589
24.4   1584.9         0.0         0.015849
23.5   1995.3         0.0         0.019953      
22.5   2511.9         0.0         0.025119
21.5   3162.3         0.0         0.031623
20.5   3981.1         0.0         0.039811
19.5   5011.9         0.0         0.050119
18.5   6263.0         0.000466    0.063096
17.5   7708.0         0.002353    0.079435
16.5   9328.0         0.006720    0.100000
15.5  11041.8         0.015082    0.125500
14.5  12733.8         0.029662    0.157000
13.5  14226.1         0.053739    0.196000
12.5  15112.7         0.083873    0.235000
11.5  15461.1         0.120389    0.275000
10.5  15204.1         0.172959    0.325000
 9.5  14061.3         0.244387    0.385000
 8.5  11695.5         0.343045    0.460000
 7.5   8093.5         0.469065    0.550000
 6.5   4036.8         0.609632    0.650000
 5.5    984.4         0.740156    0.750000
 4.5      0.0         0.835000    0.835000
 3.5      0.0         0.905000    0.905000
 2.5      0.0         0.956000    0.956000
 1.5      0.0         0.994000    0.994000
 0.5      0.0         1.000000    1.000000
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Using the interpolation scheme defined following eq. (22) gives A , Bk k

values           

k      A            B             �k k k

42     28.3         0.0         0.000283
41     35.7         0.0         0.000357                                    
40     44.9         0.0         0.000449
39     56.5         0.0         0.000565
38     71.2         0.0         0.000712
37     89.6         0.0         0.000896
36    112.7         0.0         0.001127
35    142.0         0.0         0.001420
34    178.7         0.0         0.001787
33    225.0         0.0         0.002250
32    283.3         0.0         0.002832
31    356.6         0.0         0.003566
30    448.9         0.0         0.004489
29    565.2         0.0         0.005652
28    711.5         0.0         0.007115
27    895.8         0.0         0.008958
26   1127.7         0.0         0.011277
25   1419.7         0.0         0.014197
24   1787.3         0.0         0.017873
23   2250.0         0.0         0.022500                                    
22   2832.6         0.0         0.028326
21   3566.1         0.0         0.035661
20   4489.4         0.0         0.044894
19   5628.9         0.000230    0.056519
18   6975.6         0.001397    0.071153
17   8506.9         0.004507    0.089576
16  10173.3         0.010845    0.112578
15  11876.5         0.022275    0.141040
14  13470.1         0.041542    0.176243
13  14664.6         0.068644    0.215290
12  15285.3         0.101960    0.254813
11  15333.9         0.146413    0.299752
10  14638.5         0.208313    0.354698
 9  12890.9         0.293194    0.422103
 8   9913.6         0.405386    0.504532
 7   6085.3         0.538650    0.599503
 6   2523.6         0.674338    0.699574
 5    495.4         0.787275    0.792229
 4      0.0         0.869832    0.869832
 3      0.0         0.930416    0.930416
 2      0.0         0.974955    0.975955
 1      0.0         0.996999    0.996999
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2. Horizontal resolution and model area 

The standard horizontal resolutions will be: 

                     points round      points from North Pole     Timestep

                     latitude circle   to South Pole inclusive    (minutes)

Operational forecast      288                  217                    10

Long range forecast       192                  145                    15

Seasonal forecast         144                  109                    20

Climate studies            96                   73                    30

Stratosphere studies       96                   73                    20

Limited Area Forecast     229                  132                     5

Mesoscale Model            92                   92                     1.5

Limited area model 

     The operational limited area forecast area is based on a coordinate pole

at 30 N, 160 E. The corners of the area are approximately in  actual  latitude
� �

and longitude: (45.1N, 117.4W; 45.9N,  77.1E;  11.2N,  62.0W;  11.7N,  21.4E).

Relative to the coordinate pole the corners are at  (25.66N,  50.89W;  25.66N,

50.00E; 32.31S, 50.89W; 32.31S, 50.00E). The  gridlength  is  0.442  in  each
�

direction (approximately 50km), giving 229x132 points. The  boundary  updating

for the limited area model uses a zone 4 points  in  width,  with  replacement

weights starting from the boundary of (1, .75, .5, .25). 

Mesoscale Model

     The operational Mesoscale  model  is  based  on  a  co-ordinate  pole

at 37.5 N, 177.5 E. The corners of the area are approximately in actual
� �

latitude and longitude: (60.1N,  16.6W;  60.2N,  10.7E;  46.6N,  12.7W;

46.7N,  7.1E). Relative to the coordinate pole the corners are  at  (  8.25N,

7.05W;  8.25N, 6.6E; 5.4S, 7.05W; 5.4S, 6.6E). The gridlength is  0.150  in
�

each  direction (approximately 16.8km), giving 92x92 points. The  boundary

updating  for  the Mesoscale model uses a zone  4  points  in  width,  with

replacement  weights starting from the boundary of (1, .75, .5, .25). 
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APPENDIX 2  
�

STANDARD ATMOSPHERE

The standard atmosphere consists of an  extension  of  the

International Standard  Atmosphere  (ISA)  upwards  using  reference 

mesosphere.   Between specified pressure values, the standard atmosphere  is

either  isothermal  or obeys the following equation: 

T(p) = T(pT(p) = T(p )(p)(p /p)/p) (A1)bb bb
(RL/g)(RL/g)

where p   is the pressure at the bottom of a layer and L is a lapse rate  inb

K/m. Values of T, p and L in the various layers are given in Table 1. All  the

values are for the ISA except for the top level. For  pressures  greater  than

101325, equation (A1) is applied using p  =101325 and L=-0.0065. b

Table 1

      P  (pa)             T(p ) (K)              L(K/m)b b

     101325               288.15       

                                                -0.00065   

      22632               216.65    

                                                  0

       5475               216.65   

                                                 0.0010

        868               228.65    

                                                 0.0028

        111               270.65      

                                                  0

         75               270.65    

                                                -0.0028

      .0001                89.309                 0       

     As no standard atmosphere is defined above 75pa, values were compiled

by examining satellite data given by Barnet  and  Corney  (1985).  This

contains average temperatures for each month at fixed pressure levels averaged

in  10  latitude bands. The band which agreed most closely with the ISA at 100
�

pa  was selected, giving the values shown in Table 2. The values  were  then

averaged over the year and a typical lapse rate calculated by using equation

(A1),  the point at the top of the ISA (75pa), and the average  temperature

at  the  top data point. This gives a lapse rate  of  -0.0028 K/m.  The
�

departure  of  the average temperature values at each pressure  level  from

the  one  calculated using this lapse rate and equation (A1)  are  shown  in

the  ‘error’  row  in Table 2. 
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Table 2

Month/latitude 

band Pressure level(pa)

             1.03   1.69   2.79   4.60   7.58  12.50  20.61  33.98  56.03

Jan 50S     178.7  188.9  199.8  210.7  221.4  232.5  245.1  257.0  267.1

Feb 0N      205.4  206.9  209.9  214.7  222.4  232.6  244.6  257.7  268.1

Mar 0N      209.0  208.8  210.5  214.5  221.2  230.5  242.0  254.5  266.1

Apr 50N     199.8  209.0  217.7  224.1  230.2  236.4  243.1  252.8  263.5

May 50N     185.2  195.9  206.4  215.5  224.4  234.0  243.8  254.6  265.9

Jun 50N     175.8  186.5  197.5  208.2  219.4  231.5  244.0  256.2  267.0

Jul 50N     175.9  185.9  196.6  207.4  218.2  229.4  242.0  253.8  263.7

Aug 70N     174.0  184.9  197.5  210.9  224.9  238.4  249.7  258.7  266.3

Sep 70S     214.9  219.0  222.9  227.1  232.0  239.2  249.9  261.7  268.3

Oct 60S     201.6  211.9  220.8  227.6  232.9  238.2  244.5  252.7  261.8

Nov 50S     186.8  191.4  207.8  216.8  225.3  234.6  244.1  254.8  265.5

Dec 40S     188.5  195.4  202.8  210.5  219.9  231.1  242.8  254.9  265.5

Average     191.3  198.9  207.5  215.6  224.4  234.0  244.3  255.8  265.8

Error        0      0.23  -0.11   0.36   0.47   0.17  -0.45   -1.9   -1.4

Coding implementation

Calculating T(p)  from  equation  (A1)  using  full  exponenatiation  is  very

expensive. In the code available are two cheaper alternatives [the selection

of which is controlled by *DEF LINEARTS].

a)   [*DEF LINEARTS enabled]: A simple and very cheap linear approximation

to T(p)is calculated for all values of p.

T(p) = Ap + BT(p) = Ap + B

where A and B are chosen so that T is correct at p=22632 pa and 101325 pa.

b)   [*DEF LINEARTS disabled]: The code determines which layer  p  is  in  and

then applies equation A1 exactly, except that the exponentiation  is  replaced

by a Taylor series expanded about the mid-pressure value for  that  layer  and

terminated at the sixth term.
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APPENDIX 3 

Dynamical Fluxes from the Unified Model.

     The following quantities can be requested as diagnostics from the Unified

Model. They are available at all points on all model levels and  are  produced

at  the  end  of  the  model’s  adjustment  steps.   Application  of  suitable

finite-differencing will then give a reasonable  approximation  to  the  model

advective increments. Note that for most  of  these  quantities  there  is 

explicit model flux. Also, the advecting velocity in the model is not the wind

field at the end of the adjustment step but the mean  wind  field  during  the

adjustment step. These values are usually similar but may  vary  significantly

in areas of rapid change. We denote the mean wind field during  the  advection

step by (u ,v ,w ). The diagnostics available at present and the grid-locationa a a

where calculated (see figs 1a,1b for explanation) are,

Diagnostic                    Grid-location

u  p T                        p  points.a I+1/2,j

v � p T                        p  points.a i,j+1/2

u � p T                        p         points.a L I+1/2,j 

v � p T                       p        points.a L  i,j+1/2

u � p Q                        p         points.a I+1/2,j 

v � p Q                        p         points.a i,j+1/2

u � p Q                      p         points.a T   I+1/2,j 

v � p Q                        p         points.a T i,j+1/2

u � p �                         p         points.a I+1/2,j 

v � p �                         p         points.a i,j+1/2

u � p                          u    points.(mass-flux)a i,j 

v � p                          u    points.(mass-flux)a i,j

u � p u                        u      points.a i,j

u � p v                        u    points.a i,j

v � p v                        u      points.a i,j

v � p u                        u    points.a i,j

u � p (C T + L Q  + �  )         p    points.(moist static energy flux)a p L c T I+1/2,j 

v � p (C T + L Q  + �  )         p     points.(moist static energy flux)a p L c T i,j+1/2

where �  = gz takes the value calculated in the adjustment step.

Figure 1.a 

p p pi,j i+1/2,j i+1,j

p u pi,j+1/2 i,j i+1,j+1/2

p p pi,j+1 i+1/2,j+1 i+1,j+1

        

Fig 1a., above, represents the usual model variable  staggering  where  p*

, � ,q are held at the full p points and u,v are held at the full u points. Fig
1b.,below, shows the representation with respect to Arakawa B  and  C  grids.

The point p is the point where the u component of velocity would be heldi+1/2,j 
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on a C grid. The point P  is the point where the v  component  ofi,j+1/2

velocity would be held on a C grid.

Figure 1.b 

B-p C-u B-p

C-v B-u C-v

B-p C-u B-p
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FIGURE 4
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